全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2. 4.1平面向量的数量积的物理背景及其含义教学目的:1.掌握平面向量的数量积及其几何意义;2.掌握平面向量数量积的重要性质及运算律;3.了解用平面向量的数量积可以处理垂直的问题;4.掌握向量垂直的条件.教学重点:平面向量的数量积定义教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用教学过程:一、复习引入:(1)两个非零向量夹角的概念:已知非零向量与,作,则()叫与的夹角.说明:(1)当时,与同向;(2)当时,与反向;(3)当时,与垂直,记;(4)注意在两向量的夹角定义,两向量必须是同起点的.范围是0q180(2)两向量共线的判定定理(3)练习 1.若=(2,3),=(4,-1+y),且,则y=( )A.6 B.5 C.7 D.82.若A(x,-1),B(1,3),C(2,5)三点共线,则x的值为( )A.-3 B.-1 C.1 D.3(4)力做的功:W = |cosq,q是与的夹角.功是标量,力和位移是向量,功是由力和位移确定的,类比这种运算,我们引入“数量积”的概念。二、讲解新课:1平面向量数量积(内积)的定义:已知两个非零向量与,它们的夹角是,则数量cosq 叫与的数量积,记作,即有= cosq,(其中).并规定:向量与任何向量的数量积为0.探究:1、向量数量积是一个向量还是一个数量?它的符号什么时候为正?什么时候为负?2、两个向量的数量积与实数乘向量的积有什么区别?【平面向量数量积的几点说明】(1)两个向量的数量积是一个实数,不是向量,符号由cosq的符号所决定.(2)两个向量的数量积称为内积,写成;书写时要特别注意:.符号“”在向量运算中不是乘号,既不能省略,也不能用“”代替.(3)在实数中,若a0,且ab=0,则b=0;但是在数量积中,若,且=0,不能推出=因为其中cosq有可能为0.(4)已知实数a、b、c(b0),则ab=bc a=c.但是= 如右图:= cosb = OA,= cosa = OA = 但 (5)在实数中,有(ab)c = a(bc),但是() () 显然,这是因为左端是与共线的向量,而右端是与共线的向量,而一般与不共线.2“投影”的概念:作图 定义:cosq叫做向量在方向上的投影.投影是一个数量,不是向量;当q为锐角时投影为正值; 当q为钝角时投影为负值; 当q为直角时投影为0;当q = 0时投影为; 当q = 180时投影为 -.3向量的数量积的几何意义:数量积等于的长度与在方向上投影cosq的乘积.探究1、:两个向量的数量积的性质:设、为两个非零向量,1、 = 02、当与同向时, = |; 当与反向时, = -|. 特别的= |2或 | cosq = 探究2、:平面向量数量积的运算律(1)交换律: = (2)数乘结合律:() =() = ()(3)分配律:(+)=+说明:(1)一般地,()()(2),(3)有如下常用性质:,()()三、讲解范例:例1证明:() ()(-)=-例2已知=12,=9,求与的夹角。例3已知=6,=4,与的夹角为60o求:(1)(+2)(-3). (2)+与-. ( 利用 ) 例4已知=3,=4, 且与不共线,k为何值时,向量+k与-k互相垂直. 四、课堂练习:1课后练习1、2、3、题 2已知=8,=10,+=16,与的夹角的余弦.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公司订餐合同书
- 标准兼职用工合同
- 工程造价工作流程
- 工程预算报告
- 《登岳阳楼》教案2023-2024学年高中语文必修下册
- 课后作业提升3
- 工程项目成本管理和成本控制(同名19359)
- 第22课《皇帝的新装》教学设计-2024-2025学年统编版语文七年级上册
- 湖北省咸宁市部分学校2023-2024学年高二下学期6月期末联考地理试题
- 甲状腺功能亢进危象课件
- 液化石油气泄漏应急处理考核试卷
- 早产儿低体重儿护理课件
- 大宗贸易居间合同协议书
- 2024年借款展期合同参考样本(三篇)
- 2024年人教版九年级语文(上册)期中试卷及答案(各版本)
- 2024年秋新北师大版一年级上册数学教学课件 4.6 乘车
- 上海市2023-2024学年八年级下学期期末数学练习卷(解析版)
- 2024灯光亮化维修合同
- 08D800-8民用建筑电气设计与施工防雷与接地
- HER2阳性胃癌治疗的现状与优化
- 《红星照耀中国》整本书阅读设计
评论
0/150
提交评论