已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省常德市2018-2019学年高二下学期期中数学(理)试题一、选择题1.若命题“”为假,且“”为假,则A. 或为假B. 真C. 假D. 不能判断的真假【答案】C【解析】试题分析:命题“”为假,说明与中至少有一个是假命题,“”为假说明为真命题,所以为假命题.考点:本小题主要考查了由复合命题的真假判断命题的真假.点评:解决此类问题的关键是掌握复合命题的真值表并能熟练应用.2.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输入为15,那么由此求出的平均数与实际平均数的差是 ( )A. 3.5B. 3C. -0.5D. -3【答案】D【解析】【详解】因为错将其中一个数据105输入为15,所以此时求出的数比实际的数差是,因此平均数之间的差是.故答案为D3.动点到点及点的距离之差为,则点的轨迹是( )A. 双曲线B. 双曲线的一支C. 一条射线D. 两条射线【答案】C【解析】试题分析:根据题意可假设,即,两边同时平方并化简整理得,再进行一次平方并化简整理得,即点在横轴上,但是,所以点只能是横轴的右侧的一部分,即一条射线,端点为所以本题的正确选项为C考点:求动点的轨迹【易错点睛】在解答本题时,很容易直接利用双曲线的定义:到两定点的距离之差为定值的动点的轨迹,直接得出轨迹为双曲线的一支;但是当距离之差等于两定点的距离时,动点的轨迹不再是曲线,因为当动点与两定点不在一条直线上时,三点可围成三角形,根据三角形三边关系可知,两距离之差始终小与这个定值,也就是说三点式共线的,且是一条射线4.从某鱼池中捕得130条鱼,做了记号之后,再放回池中,经过适当的时间后,再从池中捕得100条鱼,计算其中有记号的鱼为10条,试估计鱼池中共有鱼的条数大约为( )A. 1000B. 1200C. 130D. 1300【答案】D【解析】【分析】根据样本中带记号的鱼所占的比例等于总体中带记号鱼所占的比例,即可计算出鱼池中鱼的总条数.【详解】设鱼池中鱼的条数为,因为捕捞的条鱼中带记号的有条,所以样本中带记号的鱼所占的比例是,因为总体中有条鱼带有记号,所以,所以.故选D.【点睛】本题考查根据样本的频率分布与总体的频率布的关系求值,难度较易.注意样本的频率和总体的频率分布一致.5.有五条线段长度分别为,从这5条线段中任取3条,则所取3条线段能构成一三角形的概率A. B. C. D. 【答案】B【解析】【详解】从五条线段中任取三条共有种可能,其中能构成三角形的有,三种可能,故所取三条线段能构成一个三角形的概率为,故选B由题意知本题是一个古典概型.6.已知随机变量服从正态分布,且,则( )A. B. C. D. 【答案】B【解析】随机变量服从正态分布,即对称轴是,故选【此处有视频,请去附件查看】7.已知变量与正相关,且由观测数据算得样本平均数,则由观测的数据得线性回归方程可能为( )A. B. C. D. 【答案】A【解析】【分析】首先根据正相关,得到中正负,再根据线性回归方程过样本点的中心即可判断满足的线性回归方程.【详解】因为变量与正相关,所以,排除CD,又因为样本平均数,所以代入数据AB中只有A符合.故选A.【点睛】本题考查线性回归方程的相关内容,难度较易.线性回归方程一定会过样本点的中心.8.从装有2个白球和2个黑球的口袋内任取两个球,那么互斥而不对立的事件是A. 至少有一个黑球与都是黑球B. 至少有一个黑球与至少有一个白球C. 恰好有一个黑球与恰好有两个黑球D. 至少有一个黑球与都是白球【答案】C【解析】【分析】列举每个事件所包含的基本事件,结合互斥事件和对立事件的定义,依次验证即可【详解】对于A:事件:“至少有一个黑球”与事件:“都是黑球”可以同时发生,如:两个都是黑球,这两个事件不是互斥事件,A不正确对于B:事件:“至少有一个黑球”与事件:“至少有一个白球”可以同时发生,如:一个白球一个黑球,B不正确对于C:事件:“恰好有一个黑球”与事件:“恰有两个黑球”不能同时发生,但从口袋中任取两个球时还有可能是两个都是白球,两个事件是互斥事件但不是对立事件,C正确对于D:事件:“至少有一个黑球”与“都是白球”不能同时发生,但一定会有一个发生,这两个事件是对立事件,D不正确故选C【点睛】本题考查互斥事件与对立事件首先要求理解互斥事件和对立事件的定义,理解互斥事件与对立事件的联系与区别同时要能够准确列举某一事件所包含的基本事件属简单题9.有下述说法:是的充要条件.:是的充要条件.:是的充要条件则其中正确的说法有( )A. 个B. 个C. 个D. 个【答案】B【解析】【详解】::,显然是的充要条件是错误的;:,显然是的充要条件是错误的;:因为函数是实数集上的增函数,所以有:,故本说法是正确的,故选B10.本不同的书分给甲、乙、丙三人,每人两本,不同的分法种数是( )A. 90B. 15C. 36D. 20【答案】A【解析】【分析】第一步先将本书分成三组每组两本,是平均分组问题,然后再将三组书本分给甲、乙、丙三人是排列问题,由此计算出总的分法数.【详解】将本不同的书分成三组的方法数:,将三组书本分给甲、乙、丙三人的方法数:,所以总的分法数为:.故选A.【点睛】本题考查排列组合的平均分组问题,难度一般.计数原理的组合问题中,计算平均分组问题时,若有个组对应的元素个数相同,计算方法数时应在对应的组合数的算式后要除以的全排列.11. 节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮,那么这两串彩灯同时同时通电后,它们第一次闪亮的时候相差不超过2秒的概率是()A. B. C. D. 【答案】C【解析】设两串彩灯第一次闪亮的时刻分别为x,y,由题意可得0x4,0y4,它们第一次闪亮的时候相差不超过2秒,则|xy|2,由几何概型可得所求概率为上述两平面区域的面积之比,由图可知所求的概率为:=12.已知椭圆的右焦点为短轴的一个端点为,直线交椭圆于两点若,点到直线的距离不小于,则椭圆的离心率的取值范围是( )A. B. C. D. 【答案】A【解析】试题分析:设是椭圆的左焦点,由于直线过原点,因此两点关于原点对称,从而是平行四边形,所以,即,设,则,所以,即,又,所以,故选A考点:椭圆的几何性质【名师点睛】本题考查椭圆的离心率的范围,因此要求得关系或范围,解题的关键是利用对称性得出就是,从而得,于是只有由点到直线的距离得出的范围,就得出的取值范围,从而得出结论在涉及到椭圆上的点到焦点的距离时,需要联想到椭圆的定义【此处有视频,请去附件查看】二、填空题13.在张卡片上分别写有数字然后将它们混合,再任意排列成一行,则得到的数能被或整除的概率是_.【答案】【解析】【分析】首先计算出五位数总的个数,然后根据可被或整除的五位数的末尾是偶数或计算出满足的五位数的个数,根据古典概型的概率计算公式求出概率即可.【详解】因为五位数的总个数为:,能被或整除的五位数的个数为:,所以故答案为.【点睛】本题考查排列组合在数字个数问题方面的应用,难度一般.涉及到不同数字组成的几位数个数问题时,若要求数字不重复,可以通过排列数去计算相应几位数的个数.14.椭圆上一点与椭圆两焦点、的连线的夹角为直角,则的面积为 .【答案】24【解析】试题分析:由已知,又,所以,考点:椭圆的定义15.若,则_【答案】【解析】【分析】根据计算出的值,再根据计算出的值,由此可计算出的值.【详解】当时,即,当时,所以.故答案为.【点睛】本题考查二项式定理中的求展开式的各项系数之和,难度一般.计算中的值时,可令得到结果;计算的值时,可令得到结果.16.已知命题p:x1,2,x2a0,命题q:xR,x22ax2a0,若命题p且q是真命题,则实数a的取值范围是_【答案】.【解析】【分析】命题,可得,命题,可得 , 结合与为真命题求交集可得结果.【详解】命题,,命题, , 解得或,又,为真命题,解得或,故的取值范国是或,故答案为或.【点睛】本题考查了不等式恒成立问题、不等式的解法、逻辑联接词的应用,考查了推理能力,特称命题与全称命题,意在考查转化与化归思想以及综合应用所学知识解答问题的能力,属于中档题.三、解答题(6个小题,共70分)17.如图,从参加环保知识竞赛的1200名学生中抽出名,将其成绩(均为整数)整理后画出的频率分布直方图如下:观察图形,回答下列问题:(1)这一组的频数、频率分别是多少?(2)估计这次环保知识竞赛的及格率(分及以上为及格)(3)若准备取成绩最好的300名发奖,则获奖的最低分数约为多少?【答案】(1)频数15 频率0.25;(2);(2)82分【解析】【分析】(1)根据表中数据先计算出频率,然后再利用乘以对应频率即可得到频数;(2)根据图表计算出样本中的及格率,然后用样本估计总体即可得到这次环保知识竞赛的及格率;(3)首先分析获奖的最低分数所在区间,然后利用所在区间中此最低分数前面的数据所占的比例乘以对应的区间长度,从而可求出最低分数的值.【详解】(1)频率为:,频数为:;(2)根据频率分布直方图可知,分及以上对应的频率为,用样本估计总体可知,估计这次环保知识竞赛的及格率为;(3)因为有:人,有人,所以最低分数所在区间为,且中获奖的有人,所占区间总人数的比例为,所以最低分数为:分.【点睛】本题考查频率分布直方图的应用,难度一般.(1)利用频率分布直方图读取信息时,注意纵轴表示的是频率除以组距的值,不是频率的值;(2)本例中的求解最低分数和利用频率分布直方图求中位数的思想方法一样.18.某公司为了解用户对其产品的满意度,从A、B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地区:6273819295857464537678869566977888827689B地区:7383625191465373648293489581745654766579()根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度的平均值及分散程度(不要求算出具体值,给出结论即可):()根据用户满意度评分,将用户的满意度从低到高分为三个等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意 记事件C:“A地区用户的满意度等级高于B地区用户的满意度等级”,假设两地区用户的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率【答案】(1)见解析 (2)0.48【解析】【分析】(1)根据调查数据和茎叶图的定义,可做出茎叶图,通过图中的数据的分散程度,可得结论;(2)事件C:“A地区用户的满意度等级高于B地区用户的满意度等级”,分为两种情况:第一种情况是:“A地区用户满意度等级为满意或非常满意”,同时“B地区用户满意度等级为不满意”;第二种情况是“A地区用户满意度等级为非常满意”,同时“B地区用户满意度等级为满意”,分别求出其概率,再运用概率的加法公式可得值;【详解】()两地区用户满意度评分的如下通过茎叶图可以看出,A地区用户满意度评分平均值高于B地区用户满意度评分的平均值;A地区用户满意度评分比较集中,B地区用户满意度评分比较分散()记表示事件:“A地区用户满意度等级为满意或非常满意”;表示事件:“A地区用户满意度等级为非常满意”;表示事件:“B地区用户满意度等级为不满意”;表示事件:“B地区用户满意度等级为满意”则与独立,与独立,与互斥,由所给数据得,发生的概率分别为,故,故【点睛】本题考查茎叶图和特征数,求互斥事件和独立事件的概率,关键在于将事件分成相互独立互斥事件,分别求其概率,再运用概率的加法公式,属于基础题19.已知命题p:方程有两个不等的负实根,命题q:方程无实根.若p或q为真,p且q为假。求实数m的取值范围.【答案】【解析】【分析】根据一元二次方程根的分布可分别求得命题分别为真时的取值范围;根据复合命题的真假可确定一真一假,进而分别在真甲和假真两种情况下求得范围,进而得到结果.【详解】若为真,则,解得:若为真,则,解得:由为真,为假知一真一假当真假时,;当假真时,的取值范围为【点睛】本题考查根据复合命题的真假性求解参数范围的问题,涉及到一元二次方程根的分布的问题;关键是能够利用复合命题的真假性得到两基础命题的真假.【此处有视频,请去附件查看】20.已知展开式的二项式系数的和比展开式的二项式系数的和大128.(1)求n的值.(2)求展开式中系数最大的项和系数最小的项【答案】(1)8;(2)系数最大项,系数最小项和【解析】【分析】(1)展开式的二项式系数和为,展开式的二项式系数和为,根据条件可得到关于的等式求解出的值;(2)根据二项式系数的性质求得当为何值时,展开式的系数最大或最小,从而求解出对应的系数最大和最小的项.【详解】(1)由条件可知:,所以,所以;(2)因为的通项为:,由二项式系数的性质可知:当时,展开式的系数最大,所以系数最大的项为,当或时,展开式的系数最小,所以系数最小的项为和.【点睛】本题考查二项式定理的综合运用,难度一般.对于二项式系数,若为偶数时,中间一项取得最大值;当为奇数时,中间两项同时取得最大值.21.一个盒子里装有7张卡片,其中有红色卡片4张,编号分别为1,2,3,4;白色卡片3张,编号分别为2,3,4.从盒子中任取4张卡片(假设取到任何一张卡片的可能性相同)(1)求取出的4张卡片中,含有编号为3的卡片的概率;(2)在取出的4张卡片中,红色卡片编号的最大值设为X,求随机变量X的分布列和数学期望【答案】(1)(2)见解析【解析】(1)设取出的4张卡片中,含有编号为3的卡片为事件A,则P(A)=所以,取出的4张卡片中,含有编号为3的卡片的概率为(2)随机变量X的所有可能取值为1,2,3,4P(X=1)=P(X=2)=P(X=3)=P(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 一年级第二学期语文教学计划集合十篇
- 白酒销售工作总结
- 高中生自我介绍(15篇)
- 体育教师科研报告总结
- 园林施工合同范本
- 社会实践报告(集合15篇)
- 关爱生命关注健康-健康知识讲座
- 关于环保的英语
- 关于天气的英语 weather
- 共青团员入团程序
- 2024年人教版六年级上册语文知识竞赛题大赛
- 农机安全执法课件
- 《电力拖动自动控制系统》学习心得(3篇)
- 【课件】体量与力量-雕塑的美感+课件-高中美术人美版(2019)美术鉴赏
- 化工生产仿真综合实训报告
- 关于民宿管家培训
- 人工智能革命AI对全球劳动力市场的影响
- 预防艾滋梅毒乙肝培训课件
- 伯努利原理及其应用
- 建筑施工安全风险辨识风级管控(台账)清单
- 学前教育教研指导责任区制度
评论
0/150
提交评论