已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
西安石油大学本科设计论文目录第1章 x射线衍射分析方法应用现状与发张趋势31.1 x射线衍射分析的应用31.1.1 物相分析31.1.2 点阵常数的精确测定31.1.3 应力的测定31.1.4 晶粒尺寸的测定41.1.5 单晶取向测定41.2 x射线衍射法的发展趋势4第2章 材料电子显微分析方法应用现状与发展趋势52.1 电子显微分析技术应用现状52.1.1 透射电子显微镜52.1.2 扫描电子显微镜52.2 显微分析技术发展趋势52.2.1 网络化发展52.2.2 纳米领域应用62.2.3 低温技术和三维重构技术62.2.4高性能ccd相机6第3章 电子能谱分析方法应用现状与发展趋势73.1 俄歇电子能谱的分析技术应用73.1.1 表面元素定性鉴定73.1.2 表面元素的半定量分析73.1.3 表面元素的化学价态分析83.1.4 元素沿深度方向的分布分析83.1.5 微区分析83.2 俄歇电子能谱的分析技术发展趋势93.3 x射线光电子能谱的分析技术应用与发展趋势93.3.1 xps谱图分析技术的应用103.3.2 xps谱图分析技术的发展11第4章 光谱分析方法应用现状与发展趋势(红外光谱和拉曼光谱)114.1 红外光谱分析技术的应用114.1.1 红外热像仪114.1.2 红外光谱仪114.1.3 红外传感器124.2 红外光谱分析技术的现状与发展趋势124.2.1 红外技术的发展及主要应用领域124.2.2 红外技术产业的主要领域方向134.3 拉曼光谱分析技术的应用144.3.1 拉曼散射光谱具有以下明显的特征:144.3.2 拉曼光谱技术的优越性144.3.3 几种重要的拉曼光谱分析技术144.3.4 应用激光光源的拉曼光谱法144.4 拉曼光谱的应用方向及发展前景15参考文献15第1章 x射线衍射分析方法应用现状与发张趋势1.1 x射线衍射分析的应用1.1.1 物相分析晶体的射线衍射图像实质上是晶体微观结构的一种精细复杂的变换,每种晶体的结构与其射线衍射图之间都有着一一对应的关系,其特征x射线衍射图谱不会因为它种物质混聚在一起而产生变化,这就是射线衍射物相分析方法的依据。制备各种标准单相物质的衍射花样并使之规范化,将待分析物质的衍射花样与之对照,从而确定物质的组成相,就成为物相定性分析的基本方法。鉴定出各个相后,根据各相花样的强度正比于改组分存在的量(需要做吸收校正者除外),就可对各种组分进行定量分析。目前常用衍射仪法得到衍射图谱,用“粉末衍射标准联合会(jcpds)”负责编辑出版的“粉末衍射卡片(pdf卡片)”进行物相分析。目前,物相分析存在的问题主要有: 待测物图样中的最强线条可能并非某单一相的最强线,而是两个或两个以上相的某些次强或三强线叠加的结果。这时若以该线作为某相的最强线将找不到任何对应的卡片。 在众多卡片中找出满足条件的卡片,十分复杂而繁锁。虽然可以利用计算机辅助检索,但仍难以令人满意。 定量分析过程中,配制试样、绘制定标曲线或者值测定及计算,都是复杂而艰巨的工作。为此,有人提出了可能的解决办法,多晶材料x射线衍射定量分析的多项式拟合法简化了数据处理的过程,提高了分析结果的精度,使粉末衍射数据处理工作变得相对容易。1.1.2 点阵常数的精确测定点阵常数是晶体物质的基本结构参数,测定点阵常数在研究固态相变、确定固溶体类型、测定固溶体溶解度曲线、测定热膨胀系数等方面都得到了应用。点阵常数的测定是通过x射线衍射线的位置( )的测定而获得的,通过测定衍射样中每一条衍射线的位置均可得出一个点阵常数值。应用高分辨x 射线衍射(hrxrd+taxrd)技术对外延生长的srtio3 膜进行了分析,获得了有关该薄膜的晶体取向、衬底的结构特性以及弛豫态的点阵常数等信息。1.1.3 应力的测定x射线测定应力以衍射花样特征的变化作为应变的量度。宏观应力均匀分布在物体中较大范围内,产生的均匀应变表现为该范围内方向相同的各晶粒中同名晶面间距变化相同,导致衍射线向某方向位移,这就是x射线测量宏观应力的基础;微观应力在各晶粒间甚至一个晶粒内各部分间彼此不同,产生的不均匀应变表现为某些区域晶面间距增加、某些区域晶面间距减少,结果使衍射线向不同方向位移,使其衍射线漫散宽化,这是x射线测量微观应力的基础。超微观应力在应变区内使原子偏离平衡位置,导致衍射线强度减弱,故可以通过x射线强度的变化测定超微观应力。测定应力一般用衍射仪法。1.1.4 晶粒尺寸的测定若多晶材料的晶粒无畸变、足够大,理论上其粉末衍射花样的谱线应特别锋利,但在实际实验中,这种谱线无法看到。这是因为仪器因素和物理因素等的综合影响,使纯衍射谱线增宽了。纯谱线的形状和宽度由试样的平均晶粒尺寸、尺寸分布以及晶体点阵中的主要缺陷决定,故对线形作适当分析,原则上可以得到上述影响因素的性质和尺度等方面的信息。x射线衍射线形与晶体材料的微观结构密切相关,在晶粒尺寸衍射线形和微应变衍射线形可由voigt函数近似描述的前提下,由x射线衍射线形分析可获取晶粒尺寸和位错等微观结构信息。1.1.5 单晶取向测定单晶取向的测定就是找出晶体样品中晶体学取向与样品外坐标系的位向关系。虽然可以用光学方法等物理方法确定单晶取向,但x衍射法不仅可以精确地单晶定向,同时还能得到晶体内部微观结构的信息。一般用劳埃法单晶定向,其根据是底片上劳埃斑点转换的极射赤面投影与样品外坐标轴的极射赤面投影之间的位置关系。但如果试样中存在残余应力,可能影响劳埃斑点的分布,且需要借助吴氏网来测量晶体的空间取向,冲洗底片麻烦,周期长,对大量测量取向不太适用。四圆衍射仪法需逐点收集衍射数据,速度慢且灵敏度低。电子背散射衍射可进行不同晶粒取向的测量,对微区进行织构分析,并能得到取向在显微组织中的分布,但是目前国内大专院校和研究院所应用的还不是很多,且使用费用昂贵。所以一种改进的x射线衍射法出现了,它具有速度快、成本低、测量精确等特点,能精确测定单晶高温合金的取向。1.2 x射线衍射法的发展趋势 随着x射线衍射技术越来越先进,x射线衍射法的用途也越来越广泛,除了在无机晶体材料中的应用,已经在有机材料、钢铁冶金、以及纳米材料的研究领域中发挥出巨大作用,并且还应用于瞬间动态过程的测量。计算机的普遍使用让各种测量仪器的功能变得强大,测试过程变得简单快捷,双晶衍射、多重衍射也越来越完善。但是,随之而来的软件也缺陷越来越明显,在各种分析过程中,软件分析检索的准确度都不尽人意。纵观整个x射线衍射领域,可以看出仪器设备的精密化和多用途化是一个发展趋势,然而各种设备运行的软件明显落后于设备的发展,所以今后迫切的需要是软件系统的更新和完善。第2章 材料电子显微分析方法应用现状与发展趋势2.1 电子显微分析技术应用现状材料的组织形貌观察,主要是依靠显微镜技术,光学显微镜是在微米尺度上观察材料的普及方法。扫描电子显微镜与透射电子显微镜则把观察的尺度推进到纳米的层次。场离子显微镜( f im) 、扫描隧道显微镜( stm)和原子力显微镜( sfm) ,克服了透射电子显微镜景深小、样品制备复杂等缺点,可以在三维空间达到原子分辨率。近年来一种以x射线光电子能谱、俄歇电子能谱和低能离子散射谱仪为代表的分析系统,已成为从生物材料、高分子材料到金属材料的广阔范围内进行表面分析的不可缺少的工具之一。2.1.1 透射电子显微镜透射电子显微镜,是以波长极短的电子束作为照明源,用电磁透射聚焦成像的一种高分辨本领、高放大倍数的电子光学仪器。它由电子光学系统(镜筒) 、电源和控制系统(包括电子枪高压电源、透镜电源、控制线路电源等) 、真空系统3部分组成。分辨本领和放大倍数是透射电子显微镜的两项主要性能指标,它体现了仪器显示样品显微组织和结构细节的能力。2.1.2 扫描电子显微镜 扫描电子显微镜,成像原理与透射电镜不同,不用透镜法放大成像,而是以类似电视摄像显像的方式,用细聚焦电子束在样品表面扫描是激发产生的某些物理信号来调制成像。扫描电子显微镜由于其具有制样简单、使用方便、可直接观察大样品(如100mm 100mm) 、并具有景深大、分辨率较高、放大倍数范围宽、可连续调节、可进行化学成分和晶体取向测定等一系列优点,在失效分析中得到了广泛的应用。 x射线能谱仪的最大优点是不损伤被测件表面,可同时适用于光滑表面和粗糙断口表面的元素分析,可以分析某一区域的元素平均成分和样品表面某一区域某一元素的分布情况(面分布) ,也可对某几种元素进行沿指定线路的线分布分析。是目前失效分析中应用最广泛的微区成分分析仪器。进行微区成分分析时,微区成分分析的结果只能代表分析部位的局部成分,而不能代表样品宏观总的成分。x射线微区成分定量分析的准确性和品的制备有关。2.2 显微分析技术发展趋势2.2.1 网络化发展在仪器设备方面,目前扫描电镜的操作系统已经使用了全新的操作界面。用户只须按动鼠标,就可以实现电镜镜筒和电气部分的控制以及各类参数的自动记忆和调节。不同地区之间,可以通过网络系统,演示如样品的移动,成像模式的改变,电镜参数的调整等,以实现对电镜的遥控作用。2.2.2 纳米领域应用由于电子显微镜的分析精度逼近原子尺度,所以利用场发射枪透射电镜,用直径为0. 13nm的电子束,不仅可以采集到单个原子的z - 衬度像,而且还可采集到单个原子的电子能量损失谱。即电子显微镜可以在原子尺度上可同时获得材料的原子和电子结构信息。一个原子的直径约为1千万分之23mm。所以,要分辩出每个原子的位置,需要0. 1nm左右的分辨率的电镜,并把它放大约1千万倍才行。人们预测,当材料的尺度减少到纳米尺度时,其材料的光、电等物理性质和力学性质可能具有独特性。因此,纳米颗粒、纳米管、纳米丝等纳米材料的制备,以及其结构与性能之间关系的研究成为人们十分关注的研究热点。利用电子显微镜,一般要在200kv以上超高真空场发射枪透射电镜上,可以观察到纳米相和纳米线的高分辨电子显微镜像、纳米材料的电子衍射图和电子能量损失谱。如在电镜上观察到内径为0. 4nm的纳米碳管、si - c - n纳米棒、以及l i掺杂si的半导体纳米线等。在生物医学领域,纳米胶体金技术、纳米硒保健胶囊、纳米级水平的细胞器结构,以及纳米机器人可以小如细菌,在血管中监测血液浓度,清除血管中的血栓等的研究工作,可以说都与电子显微镜这个工具分不开。2.2.3 低温技术和三维重构技术低温电镜技术和三维重构技术是当前生物电子显微学的研究热点,主要是研讨利用低温电子显微镜(其中还包括了液氦冷台低温电镜的应用)和计算机三维像重构技术,测定生物大分子及其复合体三维结构。如利用冷冻电子显微学测定病毒的三维结构和在单层脂膜上生长膜蛋白二维晶体及其电镜观察和分析。当今结构生物学引起人们的高度重视,因为从系统的观点看生物界,它有不同的层次结构:个体- 器官- 组织- 细胞- 生物大分子。虽然生物大分子处于最低位置,可它决定高层次系统间的差异。三维结构决定功能结构是应用的基础:药物设计,基因改造,疫苗研制开发,人工构建蛋白等,有人预言结构生物学的突破将会给生物学带来革命性的变革。2.2.4高性能ccd相机 ccd的优点是灵敏度高,噪音小,具有高信噪比。在相同像素下ccd的成像往往通透性、明锐度都很好,色彩还原、曝光可以保证基本准确,在实际应用中,摄像头的像素越高,拍摄出来的图像品质就越好,对于同一画面,像素越高的产品它的解析图像的能力也越强,但相对它记录的数据量也会大得多,所以对存储设备的要求也就高得多。当今的tem领域,新开发的产品完全使计算机控制的,图象的采集通过高分辨的ccd摄像头来完成,而不是照相底片。数字技术的潮流正从各个方面推动tem应用以至整个实验室工作的彻底变革。尤其是在图象处理软件方面。第3章 电子能谱分析方法应用现状与发展趋势3.1 俄歇电子能谱的分析技术应用 3.1.1 表面元素定性鉴定这是一种最常规的分析方法,也是俄歇电子能谱最早的应用之一。一般利用aes谱仪的宽扫描程序, 收集从201700 ev动能区域的俄歇谱。为了增加谱图的信背比,通常采用微分谱来进行定性鉴定。对于大部分元素,其俄歇峰主要集中在201200ev的范围内,对于有些元素则需利用高能端的俄歇峰来辅助进行定性分析。此外,为了提高高能端俄歇峰的信号强度,可以通过提高激发电子能量的方法来获得。通常采取俄歇谱的微分谱的负峰能量作为俄歇动能,进行元素的定性标定。在分析俄歇能谱图时,必须考虑荷电位移问题。一般来说,金属和半导体样品几乎不会荷电,因此不用校准。但对于绝缘体薄膜样品,有时必须进行校准,以c kll峰的俄歇动能为278.0 ev作为基准。在判断元素是否存在时,应用其所有的次强峰进行佐证,否则应考虑是否为其他元素的干扰峰。3.1.2 表面元素的半定量分析首先应当明确的是aes不是一种很好的定量分析方法。它给出的仅是一种半定量的分析结果,即相对含量而不是绝对含量。由aes提供的定量数据是以原子百分比含量表示的,而不是我们平常所使用的重量百分比。这种比例关系可以通过下列公式换算:(3.1)式中 ciwt - 第i种元素的质量分数浓度; ci - 第i种元素的aes摩尔分数; ai - 第i种元素的相对原子质量。在定量分析中必须注意的是aes给出的相对含量也与谱仪的状况有关,因为不仅各元素的灵敏度因子是不同的,aes谱仪对不同能量的俄歇电子的传输效率也是不同的,并会随谱仪污染程度而改变。当谱仪的分析器受到严重污染时, 低能端俄歇峰的强度可以大幅度下降。aes仅提供表面13 nm厚的表面层信息,其表示的组成不能反映体相成分。样品表面的c, o污染以及吸附物的存在也会严重影响其定量分析的结果。还必须注意的是,由于俄歇能谱的各元素的灵敏度因子与一次电子束的激发能量有关,因此,俄歇电子能谱的激发源的能量也会影响定量结果。3.1.3 表面元素的化学价态分析表面元素化学价态分析是aes分析的一种重要功能,但由于谱图解析的困难和能量分辨率低的缘故,一直未能获得广泛的应用。最近随着计算机技术的发展,采用积分谱和扣背底处理,谱图的解析变得容易得多。再加上俄歇化学位移比xps的化学位移大得多,且结合深度分析可以研究界面上的化学状态。因此,近年俄歇电子能谱的化学位移分析在薄膜材料的研究上获得了重要的应用,取得了很好的效果。但是,由于我们很难找到俄歇化学位移的标准数据,要判断其价态,必须用自制的标样进行对比,这是利用俄歇电子能谱研究化学价态的不利之处。此外,俄歇电子能谱不仅有化学位移的变化,还有线形的变化。俄歇电子能谱的线形分析也是进行元素化学价态分析的重要方法。3.1.4 元素沿深度方向的分布分析aes的深度分析功能是俄歇电子能谱最有用的分析功能。一般采用ar离子剥离样品表面的深度分析的方法。该方法是一种破坏性分析方法,会引起表面晶格的损伤,择优溅射和表面原子混合等现象。但当其剥离速度很快时和剥离时间较短时,以上效应就不太明显,一般可以不用考虑。其分析原理是先用ar离子把表面一定厚度的表面层溅射掉,然后再用aes分析剥离后的表面元素含量,这样就可以获得元素在样品中沿深度方向的分布。由于俄歇电子能谱的采样深度较浅,因此俄歇电子能谱的深度分析比xps的深度分析具有更好的深度分辨率。当离子束与样品表面的作用时间较长时,样品表面会产生各种效应。为了获得较好的深度分析结果,应当选用交替式溅射方式,并尽可能地降低每次溅射间隔的时间。离子束/电子枪束的直径比应大于10倍以上以避免离子束的溅射坑效应。3.1.5 微区分析微区分析也是俄歇电子能谱分析的一个重要功能,可以分为选点分析,线扫描分析和面扫描分析三个方面。这种功能是俄歇电子能谱在微电子器件研究中最常用的方法,也是纳米材料研究的主要手段。3.1.5.1 选点分析俄歇电子能谱由于采用电子束作为激发源,其束斑面积可以聚焦到非常小。从理论上,俄歇电子能谱选点分析的空间分别率可以达到束斑面积大小。因此,利用俄歇电子能谱可以在很微小的区域内进行选点分析,当然也可以在一个大面积的宏观空间范围内进行选点分析。微区范围内的选点分析可以通过计算机控制电子束的扫描,在样品表面的吸收电流像或二次电流像图上锁定待分析点。对于在大范围内的选点分析,一般采取移动样品的方法,使待分析区和电子束重叠。这种方法的优点是可以在很大的空间范围内对样品点进行分析,选点范围取决于样品架的可移动程度。利用计算机软件选点,可以同时对多点进行表面定性分析,表面成分分析,化学价态分析和深度分析。这是一种非常有效的微探针分析方法。3.1.5.2 线扫描分析在研究工作中,不仅需要了解元素在不同位置的存在状况,有时还需要了解一些元素沿某一方向的分布情况,俄歇线扫描分析能很好地解决的这一问题,利用线扫描分析可以在微观和宏观的范围内进行(16000微米)。俄歇电子能谱的线扫描分析常应用于表面扩散研究,界面分析研究等方面。3.1.5.3 元素面分布分析俄歇电子能谱的面分布分析也可称为俄歇电子能谱的元素分布的图像分析。它可以把某个元素在某一区域内的分布以图像的方式表示出来,就象电镜照片一样。只不过电镜照片提供的是样品表面的形貌像,而俄歇电子能谱提供的是元素的分布像。结合俄歇化学位移分析,还可以获得特定化学价态元素的化学分布像。俄歇电子能谱的面分布分析适合于微型材料和技术的研究,也适合表面扩散等领域的研究。在常规分析中,由于该分析方法耗时非常长,一般很少使用。3.2 俄歇电子能谱的分析技术发展趋势三十多年的来,俄歇电子能谱无论在理论上和实验技术上都已获得了长足的发展。俄歇电子能谱的应用领域已不再局限于传统的金属和合金,而扩展到现代迅猛发展的纳米薄膜技术和微电子技术,并大力推动了这些新兴学科的发展。目前aes分析技术已发展成为一种最主要的表面分析工具。在俄歇电子能谱仪的技术方面也取得了巨大的进展。在真空系统方面已淘汰了会产生油污染的油扩散泵系统,而采用基本无有机物污染的分子泵和离子泵系统,分析室的极限真空也从10-8pa提高到10-9pa量级。在电子束激发源方面,已完全淘汰了钨灯丝,发展到使用六硼化铼灯丝和肖特基场发射电子源,使得电子束的亮度,能量分辨率和空间分辨率都有了大幅度的提高。现在电子束的最小束斑直径可以达到20nm,使得aes的微区分析能力和图象分辨率都得到了很大的提高。aes具有很高的表面灵敏度,其检测极限约为10-3原子单层,其采样深度为12nm,比xps还要浅。更适合于表面元素定性和定量分析,同样也可以应用于表面元素化学价态的研究。配合离子束剥离技术,aes还具有很强的深度分析和界面分析能力。 其深度分析的速度比xps的要快得多,深度分析的深度分辨率也比xps的深度分析高得多。常用来进行薄膜材料的深度剖析和界面分析。此外,aes还可以用来进行微区分析,且由于电子束束斑非常小,具有很高的空间分别率。可以进行扫描和微区上进行元素的选点分析,线扫描分析和面分布分析。因此,aes方法在材料,机械,微电子等领域具有广泛的应用,尤其是纳米薄膜材料领域。3.3 x射线光电子能谱的分析技术应用与发展趋势3.3.1 xps谱图分析技术的应用3.3.1.1 表面元素定性分析这是一种常规分析方法,一般利用xps谱仪的宽扫描程序。为了提高定性分析的灵敏度,一般应加大分析器的通能(pass energy),提高信噪比。图3.1是典型的xps定性分析图。通常xps谱图的横坐标为结合能,纵坐标为光电子的计数率。在分析谱图时,首先必须考虑的是消除荷电位移。对于金属和半导体样品由于不会荷电,因此不用校准。但对于绝缘样品,则必须进行校准。因为,当荷电较大时,会导致结合能位置有较大的偏移,导致错误判断。使用计算机自动标峰时,同样会产生这种情况。一般来说,只要该元素存在,其所有的强峰都应存在,否则应考虑是否为其他元素的干扰峰。激发出来的光电子依据激发轨道的名称进行标记。如从c原子的1s轨道激发出来的光电子用c 1s标记。由于x射线激发源的光子能量较高,可以同时激发出多个原子轨道的光电子,因此在xps谱图上会出现多组谱峰。大部分元素都可以激发出多组光电子峰,可以利用这些峰排除能量相近峰的干扰,以利于元素的定性标定。由于相近原子序数的元素激发出的光电子的结合能有较大的差异,因此相邻元素间的干扰作用很小。3.3.1.2 表面元素的半定量分析首先应当明确的是xps并不是一种很好的定量分析方法。它给出的仅是一种半定量的分析结果,即相对含量而不是绝对含量。由xps提供的定量数据是以原子百分比含量表示的,而不是我们平常所使用的重量百分比。在定量分析中必须注意的是,xps给出的相对含量也与谱仪的状况有关。因为不仅各元素的灵敏度因子是不同的,xps谱仪对不同能量的光电子的传输效率也是不同的,并随谱仪受污染程度而改变。xps仅提供表面35 nm厚的表面信息,其组成不能反映体相成分。样品表面的c, o污染以及吸附物的存在也会大大影响其定量分析的可靠性。3.3.1.3 表面元素的化学价态分析表面元素化学价态分析是xps的最重要的一种分析功能,也是xps谱图解析最难,比较容易发生错误的部分。在进行元素化学价态分析前,首先必须对结合能进行正确的校准。因为结合能随化学环境的变化较小,而当荷电校准误差较大时,很容易标错元素的化学价态。此外,有一些化合物的标准数据依据不同的作者和仪器状态存在很大的差异,在这种情况下这些标准数据仅能作为参考,最好是自己制备标准样,这样才能获得正确的结果。有一些化合物的元素不存在标准数据,要判断其价态,必须用自制的标样进行对比。还有一些元素的化学位移很小,用xps的结合能不能有效地进行化学价态分析,在这种情况下,可以从线形及伴峰结构进行分析,同样也可以获得化学价态的信息。3.3.1.4 元素沿深度方向的分布分析xps可以通过多种方法实现元素沿深度方向分布的分析,这里介绍最常用的两种方法,它们分别是ar离子剥离深度分析和变角xps深度分析。3.3.1.5 伴峰分析技术在xps谱中最常见的伴峰包括携上峰,x射线激发俄歇峰(xaes)以及xps价带峰。这些伴峰一般不太常用,但在不少体系中可以用来鉴定化学价态,研究成键形式和电子结构,是xps常规分析的一种重要补充。3.3.2 xps谱图分析技术的发展 在xps谱仪技术发展方面也取得了巨大的进展。在x射线源上,已从原来的激发能固定的射线源发展到利用同步辐射获得x射线能量单色化并连续可调的激发源;传统的固定式x射线源也发展到电子束扫描金属靶所产生的可扫描式x射线源;x射线的束斑直径也实现了微型化,最小的束斑直径已能达到6mm大小, 使得xps在微区分析上的应用得到了大幅度的加强。图像xps技术的发展,大大促进了xps在新材料研究上的应用。在谱仪的能量分析检测器方面,也从传统的单通道电子倍增器检测器发展到位置灵敏检测器和多通道检测器,使得检测灵敏度获得了大幅度的提高。计算机系统的广泛采用,使得采样速度和谱图的解析能力也有了很大的提高。第4章 光谱分析方法应用现状与发展趋势(红外光谱和拉曼光谱)4.1 红外光谱分析技术的应用4.1.1 红外热像仪红外热像仪行业是一个发展前景非常广阔的新兴高科技产业,也是红外应用产品中市场份额最大的一块,在军民两个领域都有广泛的应用。红外热像仪在现代战争条件下的卫星、导弹、飞机等军事武器上获得了广泛的应用。同时,随着非制冷红外热成像技术的生产成本大幅度降低,该产品的应用已延伸到了电力、消防、工业、医疗、安防等国民经济各个部门。 随着北京奥运会、上海世博会、广州亚运会等国内大型活动的增加,对安全的要求越来越严格,越来越多的场所需要24小时持续监控。红外线在夜间监视的应用更加突出,不仅金库、油库、军械库、图书文献库、文物部门、监狱等重要部门采用,而且也在一般监控系统中也被广泛采用,甚至居民小区监控工程也应用了红外线摄像机。带动了红外摄像市场持续升温。 4.1.2 红外光谱仪红外光谱仪主要用于化学物理分析领域,可应用于各种物理化学实验室、石油、农业、检测等领域。按应用范围可分为通用型红外光谱仪和专用红外光谱仪,按波长范围分可分为近红外光谱仪和远红外光谱仪,目前以近红外光谱仪为主。现代近红外光谱分析技术包括了近红外光谱仪、化学计量学软件和应用模型三部分。只有三者的完美结合才能达到高性能的要求。目前近红外专用光谱仪器的研制及应用在国内已受到很多专家的关注,并已开发研制出一批适应国内分析对象的仪器及应用软件。如,中国石油科学院的一批年轻学者在陆婉珍院士的带领下,研制和开发出了有我国自主知识产权的近红外专用光谱仪器及其在我国石油科学中应用的一些软件;以北京农业大学严衍禄教授领导的“中国农业近红外分析技术网络系统”课题已完成,研制和开发了有自主知识产权的、适用于中国农业品品质的分析的软件;相秉仁教授在中国药科大学分析计算中心建立了internet近红外光谱分析虚拟建模中心,进行近红外光谱分析的建模和数学模型维护等工作,并建立了一些中草药近红外分析的数学模型。 4.1.3 红外传感器随着红外测温技术的普遍应用,一种新型的红外技术智能(smart)数字红外传感技术正在悄然兴起。这种智能传感器内置微处理器,能够实现传感器与控制单元的双向通信,具有小型化、数字通信、维护简单等优点。另外,随着便携式红外传感器的体积越来越小,价格逐渐降低,在食品、采暖空调和汽车等领域也有了新的应用。比如用在食品烘烤机、理发吹风机上,红外传感器检测温度是否过热,以便系统决定是否进行下一步操作,如停止加热,或是将食品从烤箱中自动取出,或是使吹风机冷却等。随着更多的用户对便携式红外温度传感器的了解,其潜在用户正在增加。 4.2 红外光谱分析技术的现状与发展趋势4.2.1 红外技术的发展及主要应用领域 军用领域在美、英、法、德、日、以色列等发达国家的军队中,红外热像仪已配置在陆、空、海军等各个军种中,例如海湾战争中平均每个美国士兵配备1.7具红外热像仪。红外测温、红外成像已在工业、交通、电力、石化、农业、医学、遥感、安全监控与防范和科学研究等民用领域广泛应用,成为自动控制、在线监测、非接触测量、设备故障诊断、资源勘查、遥感测量、环境污染监测分析、人体医学影像检查等重要方法。系统级产品种类和量产规模的不断扩大导致了红外器件成本的降低,这个发展趋势不但促进了这项技术在民用领域能够不断地探寻更多的应用用途,同时又拉动了这项技术本身所牵引的基础行业的发展。民用领域的红外热像仪市场极有可能呈现出爆发性增长,未来全球民用潜在需求市场高达上千亿美元。4.2.2 红外技术产业的主要领域方向按产品和技术类别可分为:红外传感器、红外成像器 、红外材料、光学元件、制冷器、前放、专用信号读出处理电路、图像处理、系统设计、系统检测、仿真与试验等;按应用领域可分为:安防领域、消防领域 、电力领域 、企业制程控制领域、医疗领域、建筑领域、遥感领域等。安防领域 随着商业和民用安防监控实际需求的不断增长、部署监控系统性价比的不断提升,以及“国家应急体系”、“平安建设”、“科技强警”等重大工程项目在全国不断推进,我国视频监控市场将持续升温,并不断创造出更多的市场需求和机会。消防领域非制冷红外探测器的出现和市场价格的可接收性,红外报警已从近红外主动照射成像报警、点源红外探测报警快速向红外凝视焦平面成像发展。红外成像、红外可见光融合的智能视频监控报警系统将获得快速发展,并将广泛运用到海边防、银行、机场、油库、军械库、图书文献库、文物部门、监狱等重要部门,以及交通、工业、仓储、港口码头、物联网和森林防火等行业市场。医疗领域红外技术的医学应用主要包括人体温度检测、疾病临床诊断、疾病治疗与保健三个领域。目前,医用红外热成像技术正在生物信息、无创检测、亚健康评估、肿瘤预测、中医诊断客观化、人体异常信息的无创监测(包括sars疫情监测)等重大前沿领域得到广泛的应用。各种红外理疗仪已经逐步进入了人们的家庭。 建筑领域2006年11月1日,中国工程建设标准化协会批准实施红外热像法检测建筑外墙饰面层脱粘结缺陷技术规程,对红外热像仪在建筑行业的应用进行了规范。目前,我国建筑企业约为10万家,如果每家配备1台红外热像仪,则市场需求总量可达10万台,以平均每台售价5万元计算,市场需求额可达50亿元。遥感领域红外遥感仪器获取地物目标的红外波段辐射数据,经过信号或信息处理可以获得地球环境的信息。在地球资源探查、气象预报、防灾减灾、抗灾搜救等方面具有重要的应用价值和广阔的应用空间。有星载、机载、浮空器等众多遥感平台。4.3 拉曼光谱分析技术的应用4.3.1 拉曼散射光谱具有以下明显的特征:a.拉曼散射谱线的波数虽然随入射光的波数而不同,但对同一样品,同一拉曼谱线的位移与入射光的波长无关,只和样品的振动转动能级有关;b. 在以波数为变量的拉曼光谱图上,斯托克斯线和反斯托克斯线对称地分布在瑞利散射线两侧, 这是由于在上述两种情况下分别相应于得到或失去了一个振动量子的能量;c. 一般情况下,斯托克斯线比反斯托克斯线的强度大。这是由于boltzmann分布,处于振动基态上的粒子数远大于处于振动激发态上的粒子数。4.3.2 拉曼光谱技术的优越性提供快速、简单、可重复、且更重要的是无损伤的定性定量分析,它无需样品准备,样品可直接通过光纤探头或者通过玻璃、石英、和光纤测量。此外1 由于水的拉曼散射很微弱,拉曼光谱是研究水溶液中的生物样品和化学化合物的理想工具。2 拉曼一次可以同时覆盖50-4000波数的区间,可对有机物及无机物进行分析。相反,若让红外光谱覆盖相同的区间则必须改变光栅、光束分离器、滤波器和检测器3 拉曼光谱谱峰清晰尖锐,更适合定量研究、数据库搜索、以及运用差异分析进行定性研究。在化学结构分析中,独立的拉曼区间的强度可以和功能集团的数量相关。4 因为激光束的直径在它的聚焦部位通常只有0.2-2毫米,常规拉曼光谱只需要少量的样品就可以得到。这是拉曼光谱相对常规红外光谱一个很大的优势。而且,拉曼显微镜物镜可将激光束进一步聚焦至20微米甚至更小,可分析更小面积的样品。5 共振拉曼效应可以用来有选择性地增强大生物分子特个发色基团的振动,这些发色基团的拉曼光强能被选择性地增强1000到10000倍。4.3.3 几种重要的拉曼光谱分析技术1、单道检测的拉曼光谱分析技术2、以ccd为代表的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 篮球租场合同模板
- 2024年品牌代理权标准协议模板版
- 2024年先进起重设备采购与销售协议模板
- 2024年度防水堵漏服务协议版
- 项目设计顾问合同模板
- 单日旅行团体客运服务协议样本版
- 香港工程中标合同模板
- 建筑设备采购合同模板
- 2024年度建筑二次施工协议制定本版
- 自建三层房产买卖合同模板
- 【讲座】初中语文部编本教材解读课件
- 公开课听课教师签到表
- 开展新技术、新项目科室内讨论记录
- 主题班会-同学情教学课件
- 道德与法治《健康看电视》优秀课件
- 泌尿系统完整结构培训课件
- 规培体表肿物切除术
- 新教材北师大版高中数学必修一 2.3函数的单调性和最值 课时练(课后作业设计)
- DB32∕T 943-2006 道路声屏障质量检验评定
- 四年级(上册)综合实践活动课教学案(贵州科学技术出版社)
- 腹泻教学课件
评论
0/150
提交评论