实验设计─田口方法_第1页
实验设计─田口方法_第2页
实验设计─田口方法_第3页
实验设计─田口方法_第4页
实验设计─田口方法_第5页
已阅读5页,还剩199页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

實驗設計 田口方法 實驗設計簡介 為什麼需要實驗設計 同樣在生產同規格的產品 為什麼有些廠商的良品率就是比較高 同樣是在生產同類型的產品 為什麼有些人的產品性能以及壽命就是比較好 而成本又比較低呢 ThisistheKnowhow 相同原料 相同製程 為什麼良品率不一樣 相同產品相同功能 更便宜的原料 為什麼可以做出低成本高質量的產品 日本工業強盛的原因 日本人在多種製造業 如汽車 鋼鐵 電子和紡織方面 居於領導地位 主要是因為他們能以具競爭力的價格 生產高品質產品 美國研究後認為而他們致勝的法寶主要有二項 QFD 自顧客要求一直策劃到相應的製造管理要求 田口方法 實驗設計方法之一 簡單易用 沒有複雜的統計原理 實驗設計的想法 process output input supplier customer 客戶關心什麼 在乎什麼 抱怨什麼 如何確定成為量化的產品特性 Y特性 CTQ 過程中有那些的過程因子 其會影響到y特性 那些可能有相應的交互作用 從中找出CTP 有那些的輸入因子會影響到y 從中找出CTI 對供應應要提出那些的規格要求 尤其是CTI Y f x 的思想 過程 產品 原材料 客戶 供應商 Y f x Y F x 關鍵x 利用其控制y的平均值滿足需求 標准差滿足需要 非關鍵x 由於其影響較不大 用其來降低成本 Y 優先關注客戶重視的特性 要能量化 有時不只一個Y特性 二階段的實驗步驟 供應商 雙贏夥伴 顧客 需求期望 滿意 DOE的應用階段 田口工程簡介 由田口玄一博士所提出的一套實驗方法 它在工業上較具有實際應用性 是以生產力和成本效益 而非困難的統計為依歸 廠商現在必須致力於在生產前就使複雜的產品能達到高品質 減少變異亦即要有較大的再現性和可靠性 而最終目的就是要為製造商和消費者節省更多的成本 討論題 實驗設計的目的是為了什麼 實驗設計是線上品管還是線外品管 為什麼線外品管要比線上品管早做呢 變異和雜音 雜音因素就是使機能特性 如燃料效率 換檔壓力 磨耗和轉向力等偏離目標值的因素 雜音因素可分為三類 外部雜音 產品使用時 因使用條件 如溫度 濕度 灰塵等而使機能發生變異 此類條件為外部雜章因素 內部雜音 劣化 產品組件的劣化 產品間雜音 在既定的製造條件下 因條件變異而造成產品間發生差異 所有品質管制活動的目標就是要生產經得起各種雜音因素考驗的產品 堅耐性 所有品質管制活動的最終目標就是要生產經得起各種雜音因素考驗的產品 堅耐性 Robustness 就是產品的機能特性對雜音因素的差異不敏感 不受影響 堅耐性和雜音間的關係 PROCESS INPUT OUTPUT Y CUSTOMER 可控因子X表示 不可控因子Z表示 Z Z Z Z X X X 堅耐性設計 利用X使得Y達目標值 且不易受Z因子方影響 謂堅耐性設計 討論題 當你在讀書時 外界有人在吵 有人在放音樂 請問這些是信號 還是雜音 什麼是雜音 可否用比較簡易的方式來表達 什麼是堅耐性 如果以此題來表達時 正交實驗法導入 一個瓷磚工廠的實驗 在1953年 日本一個中等規模的瓷磚製造公司 花了200萬元 從西德買來一座新的隧道 窯本身有80公尺長 窯內有一部搬運平台車 上面堆疊著幾層瓷磚 沿著軌道緩慢移動 讓瓷磚承受燒烤 問題是 這些瓷磚尺寸大小的變異 他們發現外層瓷磚 有50 以上超出規格 則正好符合規格 引起瓷磚尺寸的變異 很明顯地在製程中 是一個雜音因素 解決問題 使得溫度分佈更均勻 只要重新設計整個窯就可以了 但需要額外再花50萬元 投資相當大 內部瓷磚 外層瓷磚 尺寸大小有變異 上限 下限 尺寸大小 改善前 改善前 外部瓷磚 內部瓷磚 實驗方法 一次一個因素法每次只改變一個因子 而其他因子保持固定 但它的缺點是不能保證結果的再現性 尤其是當有交互作用時 例如在進行A1和A2的比較時 必須考慮到其他因子 但目前的方法無法達成 一次一因素的實驗 全因子實驗法 全因子實驗法這種實驗方法 所有可能的組合都必須加以深究 但相當耗費時間 金錢 例如7因子 2水準共須做128次實驗 13因子 3水準就必須做了1 594 323次實驗 如果每個實驗花3分鐘 每天8小時 一年250個工作天 共須做40年的時間 正交表 OrthogonalArray 直交表 正交表 直交表用於實驗計劃 它的建構 允許每一個因素的效果 可以在數學上 獨立予以評估 可以有效降低實驗次數 進而節省時間 金錢而且又可以得到相當好的結果 回應表 ResponseTable 最佳條件確認 由於缺陷是愈小愈好 所以依此選出的最佳條件為 A1B2C2D1E2F1G2 確認實驗 將預期的缺陷數和 確認實驗 的結果做比較 但事實上廠商選得是A1B2C1D1E2F1G2 主要的原因是C 蠟石 要因的價格很貴 但改善的效果又不大 所以選C1 蠟石含量為43 內部瓷磚 外層瓷磚 尺寸大小有變異 上限 下限 尺寸大小 改善前 外部瓷磚 內部瓷磚 改善後 討論題 從本案例中 你認為 最能提供最完整的實驗數據的是那一個方法一次一個因子法全因子法正交實驗法正交實驗法有何優點 正交實驗配置 直交表和線點圖 傳統的實驗計劃方法是由英國的R A Fisher在本世紀初發出來的 該方法包含多種的統計設計技巧 其需要使用比較繁複的統計技巧 所以較少使用在工業界上 田口方法 由田口玄博士所提出 它刪除許多統計設計的工作 以一種可以直接 經濟的方式一次就可以做許多因素的實驗 所以工業界上較常用 單因素實驗 所謂單因素實驗方法 即實驗過程中只允許單一因素變動 其餘因素必須保持固定的實驗方法 但單因素實驗法可能之問題如下將會漏失複合因素的訊息當因素數很多時將較不真實無法保證在實際的製造條件中 可獲得實驗結果的再現性見次頁 一次一因素的實驗 全因素實驗 全因素實驗計劃方法允許在同一時間內檢查多數因素的效果 而在做全因素實驗時所有因素的複合水準都將被檢查 直交性 在實驗計劃中最主要的一個特性 便是實驗結果的再現性 另外 當我們希望能在各種相異的條件 以最有效的方式比較因素水準時 都只有在直交性實驗計畫方法中才能達到利用直交表進行實驗 在實驗結果的可靠度及高再現性上 都具有高效益 不管製程條件如何變化 在不同條件下 獲得好的再現性之效果是相同的 假如我們的實驗計劃均為直交 則我們在回應表中比較A1和A2時 我們將可確定A1中B效果與A2中的B效果應為相同 且當因素以直交方式變動時 其它的效應將不會混合於各因素的水准內 假設實驗執行所需花費的成本相當高 在此情況下不管任何理由 我們希望只做四次實驗 以代替全因素實驗 請問下列二表 你會選擇那一項 自由度的概念 自由度實為獲取情報大小的量度 通常自由度愈大 所獲得的情報愈多例子有三個人比較身高 至少須比較多少次才可以知道結果須比較二次才可以得到結果直覺上的定義 因素的自由度為水準間所必需但不重覆的比較次數 而在數理運算上 因素的自由度可簡單的以水準數減一表示 它代表因素能夠相互獨立記述計算的數目 在實驗中因素設定的水準愈多 則自由度隨著增加 換句話說可以得到更多情報 但是相應的實驗成本會增加 目前有三個人的身高 如果要去進行比較 最少的比較次數 而得到全部的信息 效果 A1 A2 效果 B1 B2 B3 二水准的情況 只須比較一次 所以自由度為一 三水准的情況 須比較二次 所以自由度為二 交互作用 原先假設因素的效果不會受其它因素水準的影響 然而在實際的狀況並非如此 當一個因素的效果與其它因素水準相互影響時 因素間就有交互作用存在 一般可以繪製交互作用圖來了解其間之交互作用關係 例子 設有A B二種藥劑 成份完全不同 且兩者都能夠使病人狀況獲得改善 單獨使用時都有功效 但合併使用 病人反而更槽 A和B無交互作用 A和B有交互作用 B2 A1 A2 B1 A和B有強烈交互作用 交互作用分析表 交絡 在決定是否要配置交互作用效果於一直行時 要相當謹慎 必需於交互作用極端重要才可進行配置 假如A因素和B因素間並無交互作 則行3將可能配置另一個因素C 此時由於配置因素C在A B交互作用存在的行 我們將無法再由該行估計A B的交互作用 如果我們的判斷是錯的 且A B相當顯著 則交互作用效果將會顯現在該行的估計值中 但是我們將無法由C因素效果中 將交互作用效果區分出來 此種現象稱之為交絡 二因素交互作用的自由度 數學上之表示如下d f A B d f A d f B 例子 A為二水準 B為三水準 則其自由度為 1 2 2 效果 A2 A1 B1 B2 B3 直交表的自由度 二水准 表示直交表 ROW數相當於實驗總數 水準數 COLUMN數相當於可配置多少因子 直交表的自由為實驗執行次數減一 直交表的自由度 三水准 表示直交表 列數相當於實驗總數 水準數 行數相當於可配置多少因子 直交表的自由度为实验执行次数减一 練習 在二水准的直交表中 a和b有何關係 如果因子依此配置有何關係 在三水准的直交表中 a和b有何關係 如果因子依此配置有何關係 練習 試寫出直交表L8 27 可提供多少自由度 最多可以配置幾個因子 試寫出直交表L9 34 可提供多少自由度 最多可以配置幾個因子 試寫出直交表L81 340 可提供多少自由度 最多可以配置幾個因子 試寫出直交表L64 421 可提供多少自由度 最多可以配置幾個因子 L4 23 直交表 本直交表總共須做四次實驗 總共可提供三個自由度 每一個二水准的因子需要一個自由度 所以最多只能配置三個因子 L8 27 直交表 本直交表總共須做8次實驗 總共可提供7個自由度 每一個二水准的因子需要一個自由度 所以最多只能配置7個因子 如果有二水准因子間有交互作用時 交互作用亦須配置自由度 直交表的運用 利用自由度我們可選用最小且最合適的直交表 係依據因素數量 每個因素的水準數 以及我們所欲調查的交互作用數量等加以累加後實驗計畫的自由度來決定 例如 一實驗包含二水準因素A B C D E和交互作用A B A C 請問應選用何種直交表解決此一問題 每個二水準因素具有2 1 1的自由度 每個交互作用具有1 1 1的自由度總自由度d f 5個因素 1d f 2交互作用 1d f 7d f 因此 7個自由度是獲得期望資料數量所必需的自由度 而L8直交表為二水準具7個自由度的實驗計畫 因此L8直交表是可以滿足此項要求的 兩行間交互作用的配置 假如我們預期兩變數存在有顯著的交互作用 則我們可能在直交表中 預先保留一直行供配置交互作用 以利清晰的估計交互作用 如果我希望避開交絡現象 則必需妥慎的配置交互作用 不應任意配置 如果不加注意 則不管是最簡單的L4直交表 或是最複雜的直交表 交互作用的追蹤分析將變得困難 可以利用的方法是三角矩陣法 練習於行 3 和 7 的交互作應配置於那裡 L8 27 直交表的交互作用配置表 練習 假設目前是要找出關鍵因子 所以都用二水准實驗 請問該用那個直交表 如果溫度和時間是有交互作用 如果溫度配在L8的第三行 時間配在第五行 那麼其交互作用行應配置在那裡 線點圖 線點圖為田口博士在運用直交表於實驗計畫上的另一個貢獻 所謂線點圖即為三角矩陣的圖示方法 它利用圓點與直線圖型為工具 以便利完成直交中與交互作用的配置 線點圖之使用 配置因素於圓點上考慮因素間的交互作用 若交互作用存在 則配置該交互作用於聯接該兩因素圓點的直線上 若某兩因素間的交互作並未確定存在 則該兩因素的聯線上可配置其他的因素 1 3 2 5 4 6 7 1 2 3 5 4 6 7 交互作用的考慮 一般工業上 研究交互作用並非實際 就算交互作用存在 也是不容易對付的 所以一般高層的交互不考慮 直交表的因素配置 步驟一計算實驗總自由度 二水準因素A B C D E 交互作用B C C D 故自由度 5 2 7 一個二水準m行 column 的直交表 具有m個自由度 由各種直交表中選擇一個能夠包含實驗所需自由度的直交表 步驟二 繪出所需要的線點圖 步驟三 由標準的線點圖中選擇適當的線點圖 步驟四 將繪出的線點圖與標準線點圖相比對配合 選出最合適的線點圖 步驟五 配置每個主效果和交互作用到合適的行中 練習 如果現有A B C D四個因子 其AB CD BC是有交互作用的 請試著利用點線圖進行實驗配置 如果利用L8直交表配置不出來時該如何處理 請利用L16表配配看 是否可以滿足 有交互作用之直交表配置 計算所有因子與交互作用自由度之和 即所有要因自由度總和 選取自由度不小於要因自由之和且試驗次數最小之相同水準數直交表 選定一交互作用 將其相關之兩因子任意配置於直交表之行上 然後根據 交互作用配行表 將此交互作用配置於直交表之行上重覆上個步驟 直至所有交互作用之因子皆配置完為止 將剩餘之因子任意配置於直交表之剩餘行上 依據各要因所配置行上的數字1 2或3 決定各試驗的水準組合 依隨機順序進行全部之試驗 線點圖的練習 二水准 A B C D E F G H I J 交互作用A B A C B C B G G H 二水准 A B C D E F G H I 交互作用A B A C A D A E E F E G 二水准 A B C D E F G H 交互作用A B A C A E B C G H 如何修改標準的線點圖 利用三角矩陣表使一個特殊的實驗可以利用標準的線點圖 修改為合乎使用的線點圖 此項須配合練習 做法繪製符合題意的線點圖選擇合適的標準線點圖檢查三角矩陣圖 以瞭解標準線點圖可被修改的方式修改標準線點圖 並且配置合適的因子效果 2 6 4 12 1 10 11 13 3 5 9 8 7 15 14 3 修改 利用三角矩陣使一個特殊的實驗可以利用標准線點圖型 修改為合乎使用的線點圖 此圖線3已被移動 原先的直線已刪除 即1 2的交互作用是3 但12 15的交互作用也是3可以移過來 交互作用直交表練習 利用L16直交表 配置下列實驗計劃A B C D E F G H I JA B C D E F F G G HSTEP1 繪出需要的圖 I J A B C D E F G H STEP2a 選擇合適的標准線點圖 1 STEP2b 利用L16三角矩陣表 以了解可被修的方式 由於行7與10的交互作用配置於行13 因此 可將線13移動 使其聯接點7與點10 L16三角矩陣表 線點圖的練習 二水准 A B C D E F G H交互作用A B A C A D A E B C C D E F 二水准 A B C D E F G H I J 交互作用A B C D E F E G G H 二水准 A B C D E交互作用A D B E 直交表的數據分析 傳統的變異數分析係以統計檢定的方法來決定各因素對變異影響程度是否顯著 田口方法卻強調以回應分析方法 回應表及回應圖 來區分各因素平均值效果的大小 正規分析決定因素間的平均回應值 比較這些回應平均值 並選出最佳因素水準 由選出的最佳水準來估計製程平均 確認實驗的結果與估計值比較 1 2 3 1 4 5 2 4 6 1 6 7一般而言 三階交互作用的存在不明顯 可以假定該交互作用不存在 所以此行可以用來配置其他主要因子 但如果交互作用明顯則會產生交絡現象 飽和配置 當所有的COLUMN均配置主因子時 完全忽視交互作用時 則稱為飽和配置 配置練習 三水准 A B C AC有交互作用 請進行配置 三水准 A B C D E AD BE請進行配置 配置練習 在塑膠射出成型的工廠中 研究影響塑膠製品強度的三個因子分別 A B C 是用三水准 如果A B C之間沒有存交互作用 則可利用那一個直交表配置 若A與B有交互作用 則用那一個直交表來配置 直交表的數據分析 計量型 直交表的數據分析 正規分析 決定每個因素的平均回應值 估計每個因素及交互作用之主效果 接著比較各主效果 找出較強之主效果 完成回應表交互作用的分析 只需點繪較強之主效與交互作用 因為較弱效果的因素水準 對推動力的影響極微 可以忽略不計 最佳化及最佳條件的估計 確認實驗 遊艇的真空控制閥門組合的推動力 目標 推動力 望大特性 交互作用 B C與C D 決定每個因素水准的平均回應值 交互作用的計算 推動力 E1 E2 10 20 30 40 50 推動力 D1 D2 10 20 30 40 50 推動力 B1 B2 10 20 30 40 50 推動力 A1 A2 10 20 30 40 50 B2 B1 回應圖 Tbar 最佳化條件的選定因為推動力為望大特性 從C B交互作用之回應圖知因素B與因素C之最佳水准組合為C1B2 從回應圖上看出 A1的效果不錯D1的效果尚不錯E2的效果最強所以最佳條件為C1B2D1A1E2 最佳水准回應值之估計為確認所定之結果的再現性 必須再估計出此最佳條件C1B2D1A1E2的推定值 並與確認實驗的結果相驗證 看是否具有再現性 推動力 E1 E2 10 20 30 40 50 推動力 D1 D2 10 20 30 40 50 推動力 B1 B2 10 20 30 40 50 推動力 A1 A2 10 20 30 40 50 B2 B1 效果可加性分析 確認實驗確認實的目的是為了確認結果的再現性 即在最佳條件A1B2C1D1E2之下 做了一次確認實驗 本次實驗的製程平均為55 25 CASE1 Y 58 再現性非常好 CASE2 Y 54 沒有CASE1好 但仍算好的再現性 CASE3 Y 42 再現性差 但比38好 可以先用 然後考慮再改善 CASE4 Y 30 再現性差 不可接受 必須重新考慮 CASE5 Y 65 遠較所期望的還好 可能存在某種交互作用 確認實驗結果之說明 如果確認實驗之結果不佳時 一般原因如下 可加性極差 即所選取之控制因素有極強烈的交互作用存在 最佳條件所選取之控制因素仍不足 可能遺漏了一個極顯著的控制因素 因素水準距離太小 無法測得因素水準改變所造成的效果 再現性不好的措施水准距離是否設得太小 是否漏了重要因子 有交互作用沒有考慮到 練習 磨耗率 交互作用 A B與A C望小特性 n 16T 960 回應表 交互作用的計算 E1 E2 20 40 60 80 100 C1 C2 20 40 60 80 100 B1 B2 20 40 60 80 100 D1 D2 20 40 60 80 100 A1 A2 20 40 60 80 100 A1 A2 20 40 60 80 100 B2 B1 回應圖 最佳條件選定最佳水准估計確認實驗實驗結果為30實驗結果為35實驗結果為40 練習 為提高某型冷氣機之EER值 考量下列控制因子皆為2水准控制因子A壓縮機規格B散熱片型式C散熱片處理冷媒銅管型式毛細管長度試設計本實驗 實驗數據分析練習 直交表的數據分析 L4 23 直交表 1 3 2 做四次實驗 可配置三個因子 是最小的直交表 直交表的數據分析 L8 27 直交表 1 3 5 2 6 4 7 1 3 2 5 4 6 7 直交表的數據分析 L12直交表L12是一個非常特殊的直交表 交互作用的效果平均分配到該直交表的11個縱行上 它沒有線點圖可以使用 使用之前提在於交互作用並不明顯時 它的再現性很好 是田口博士所推薦使用的 L12 211 直交表 三水準系列直交表 每一column可提供二個自由度 每個因子需佔用一行 三水準須使用二個自由度交互作用需佔用兩行 3 1 3 1 4 L9 34 直交表 1 3 4 2 L18 21 37 直交表 此表可配置一個2水准與七個3水准 1 2 7 15 但事實上L18應是提供17個自由度 但實際上此表在第一行與第二行之間存在一個 內含 的交互作用 2 1 3 1 2 在第一行和第二行之間可用配置表及回應圖將交互作用給檢查出來 在AT T L18是最普遍被使用的直交表 最常使用的直交表為 L16 L18 L8 L27 L12 L18 21 37 直交表 1 2 衝突時的解決方式 此時要將y1 y2 y3都必須做分析 並針對彼此做出最佳的妥協 不然就可能會出現 y1好了 但是y2可能變不好了 品質特性的選取 田口方法係一種工程方法 擁有製程或產品的專門知識及有效率的實驗方法 才能夠設計出來一個極有效的工業實驗 因此必須懂得此兩種型態的知識才可能成功 品質特性的選取及因素與水準的區分是屬於工程專家的工作 而各因素的配置及實驗數據的解析則屬於數據分析專家的工作 田口博士視品質特性的選擇為實驗計畫中最主要的部份 也是最困難的部份 总体方法 实际问题 參數設計 內外直交表 正規分析的目的 LSL USL 參數設計的做法 LSL USL STEP1 STEP2 參數設計 參數設計的目的 在於決定產品與製程的參數值 以求得產品機能的穩定 使其在高水準下運作 而受干擾的影響程度最低 參數設計在於運用因素間非線性與線性的一些關係 找出控制因素與誤差因素間的交互作用 利用非線性減少變異 再利用線性關係提高水準 即使使用便宜的材料或在不良的環境之下 製程或產品也能達到堅耐性 參數設計所運用的技術是S N比 訊號雜音比 它可以表示製程或產品的水準及其誤差因素影響的程度 參數設計是一種提高品質而又不影響成本的設計 一般而言 要提高品質一定要把影響這個產品的不良原因消除 才能達到 如此則必須提高成本 如果不去消除原因 而把這些原因所產生的影響設法消除 則不必花什麼成本 也能提高品質 此即參數設計 參數設計的配置 參數設計的第一步 為分開列出控制因素與誤差因素 然後找出具有最小交互作用的控制因素以便研究控制因素與誤差因素之間的交互作用問題 一般而言控制因素放在直交表內側 誤差因素放在直交表外側 參數設計設置 誤差因素 MN 誤差因素的選擇 作參數設計時 雖然誤差因素愈多愈好 如此才可獲致較多情報 但實驗將會變得很大 在費用與時間將不允許 故只能在經營能力範圍之內 選擇重要的 影響較大的才予以考慮 對策為了避免太大的實驗 最好能使用誤差因素複合成1 2或最多3個 複合時可依工程知識做取捨 假如不能確知時 應事先用直交表做實驗 一定是選重要的 影響最大的 選擇最重要的誤差 經驗告訴我們 試驗時若對最大的誤差具有堅耐性的話 對其他的誤差也必將穩定 一般採用2水準即可 並可用兩極端條件複合 誤差因素 MN O 信號雜音比 望小特性 不包括負值 不包括不良率0 最佳條件最理想狀態為0 當品質特性能夠分類 而希望愈小愈好時 如產品的收縮度 劣化度 噪音 各種公害等 其標准的信號雜音計算如下 望小特性的S N比 練習 假設LD 50 0 6 修理成本為70美元 求損失函數值 計算K值以及每一方法中單位產品的損失金額 本例產品的損失金額為25美元 練習 望小特性S N值的特性 S N值是量測平均值與變異程度的指標 S N對平均值的靈敏度大過於對變異數的靈敏度 當S N比每增加3分貝時 則單位損失將減少一半 X分具的增益 Gain 可用S N比數字來表示 其公式為 補充Why 練習 射出成型 望小特性參數設計 練習 射出成型 望小特性參數設計 回應特性 收縮長度 吋 百分率用L8直交表排在内側 L4直交表排在外側 計算S N比 完成回應表及回應圖 決定最佳因素組合 參數設計配置 S N回應表 根據計算的S N比 可以製作回應表 並繪圖如下而選擇最佳的組合 最佳組合是 回應圖 練習 射出成型 望小特性參數設計 當S N比計算出來後 即可求出回應表 繪出回應圖 並可選出最佳因素組合 亦可將成本與品質因素並同考慮選擇 練習 射出成型 望小特性參數設計 由此可知 增益每增加3db 則MSD可減少一半 增益每增加6db 則MSD可減至四分至一 增益每增加9db 則MSD可減至八分至一 MSD減少則平均值減少 變異程度亦減少 比較S N時愈大愈好 MSD愈小愈好 練習 泡沫膠膜收縮度 望小特性參數設計 回應特徵 泡膜膠膜收縮度 練習 泡沫膠膜收縮度 望小特性參數設計 誤差因素 M 定型度 Fixture 計算S N比完成回應表 找出對泡沫膠收縮影響較強的因素 繪出影響較大的回應圖 配置與數據 回應表 S N回應圖 S N回應圖 S N 練習 泡沫膠膜收縮度 望小特性參數設計 最佳組合的推定從回應圖中吾人選出 A1B2E2F1H1為顯著性較強的因素 C1D2G2I2J1K2為顯著性次佳的因素 故最佳組合為 A1B2C1D2E2F1G2H1I2J1K2 練習 泡沫膠膜收縮度 望小特性參數設計 在最佳組合情況下回應特性值之預測爲了避免由於高估變異的誤差 吾人在計算回應特性值時僅持用影響因素較高的因素來估算 請問倒推回來的值應是多少 21 72時那麼其收縮率應為多少 21 72Y2 0 0067Y 0 082千萬要記得再做確認實驗 看其再現性是否良好 練習 泡沫膠膜收縮度 望小特性參數設計 假如在現行狀況時吾人獲得數據如下 練習 泡沫膠膜收縮度 望小特性參數設計 首先計算在現行狀況時S N比 exist 現行狀況時之S N比值 練習 泡沫膠膜收縮度 望小特性參數設計 其次計算在現行狀況下之損失 假設k 194 4 練習 泡沫膠膜收縮度 望小特性參數設計 現行狀況與最佳狀況下S N比之差異 可計算出兩者閒之增益 練習 泡沫膠膜收縮度 望小特性參數設計 是以吾人可估計 在最佳狀況下之損失 並且從而估出製程改善後最佳狀態下所能節省之金額 由以上計算得知 每件可節省3美元 如每月生產10 000件 則一年可節省360 000美元 望大特性的S N比 望大特性S N值的特性 S N值是量測平均值與變異程度的指標 S N對平均值的靈敏度大過於對變異數的靈敏度 當S N比每增加3分貝時 則單位損失將減少1 2 X分具的增益 Gain 可用S N比數字來表示 其公式為 練習 塑膠表面塗鋁處理 回應特性 塑膠撕裂強度 練習 塑膠表面塗鋁處理 計算S N比完成S N回應表 並找出對撕裂強度影響較大的因素 繪出影響較大因素之回應圖 配置與數據 練習 塑膠表面塗鋁處理 計算上表最後一欄倒數三行之S N數值 並完成以下回應表 S N比對應表 由二者之差選出最佳組合 回應圖 S N 回應圖 S N 10log MSD L k MSD 雜音與損失函數成正比故可由此計算 練習 塑膠表面塗鋁處理 最佳狀況的決定最佳組合是 A2B1E1F2H2在最佳狀況下回應特性值的預測爲了避免由於高估變異的誤差 吾人估計在最佳組合下撕裂強度特性值時 用顯著性較強的影響因素來推計 練習 塑膠表面塗鋁處理 你該如何計算由現行狀況改變為最佳狀況後所產生之增益呢 增益 o e 練習 如果原條件的 值為30 那麼請回答下列問題 請問在本次實驗所得到的最佳化 值後 其損失可以降為原來的多少 請將 值轉換成強度的估計值 為多少 練習 塑膠表面塗鋁處理 續 傳統分析利用每次實驗所得數據來比較傳統分析及S N之分析完成回應表並找出影響大的因素 繪出回應圖 並找出最佳組合狀況 估計最佳組合狀況時回應特性值及 opt 配置與數據 計算上表的平均值並完成以下回應表 平均值回應表 選出最佳組合 平均值回應圖 平均值回應圖 練習 所以最佳條件為 A2B1E1H2I2估計的的最佳平均值為 70 5和利用S N計算的結果有不同嗎 最後請記得做確認實驗 傳統分析和S N分析的比較 傳統分析益處可求出控制因素與誤差因素之主效果假如我們比較誤差因素時知道第一部機器比第二部機器好 就可選擇第一部機器 限制只能在變異一樣的情況下比較平均值 誤差要有常態分配 受到交互作用的影響 傳統分析和S N分析的比較 益處 S N著眼在平均值及變異數 交互作用有 但平均分配到各效果上 把交互作用視為誤差 S N是測試因素與誤差因素間有無交互作用的指標 S N所顯示的數據係干擾程度的指標 S N與成本間有密切的關聯 簡單容易導出結論來 m2 2表示變異大小的指標 m稱變異係數越小越好 m2 2愈大愈好 望目特性S N值的特性 S N比 db 是變異的變化的量度 靈敏度 Smdb 是平均值變化的量度 一般其狀況如下 望目特性的因子種類 望目特性的策略 當有特定的目標時 田口導出一獨特的策 在實驗進行中有兩種型式的控制因素可運用 影響變異的因素 影響平均值但不影響變異的因素 又稱調整因素或信號因素 用S N比找出以上兩種型態的因素後 以影響變異的因素來縮小變異至最小的程度以信號因素來調整平均值使接近目標 LSL USL 參數設計的做法 LSL USL STEP1 STEP2 望目特性S N以及靈敏度 y 望目特性值 控制因素A A1 A2 A3 A4 An 誤差因素N N1 N2 N3 Nn 練習 望目特性的S N值特性 平均值增加S N增加 當變異一樣時 變異減少S N增加 當平均值一樣時 數據變化很大時要用Smdb來計算 Sm的變化等於平均值的變化 最好用db做單位 因為算術可加性較好 變異的衡量 S N及Ve S N 衡量對平均值的變異度 以正負平均值的 表示 當特性值是絕對值時 如y 0 對望目特性值 我們可計算平均值的變異度 以下式計算 Ve 衡量變異度以正負絕對值表示之 當特性可以取負

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论