![幂函数知识总结_第1页](http://file1.renrendoc.com/fileroot_temp2/2020-4/6/0db81605-cbeb-4521-ba05-f7b87f3d49b4/0db81605-cbeb-4521-ba05-f7b87f3d49b41.gif)
![幂函数知识总结_第2页](http://file1.renrendoc.com/fileroot_temp2/2020-4/6/0db81605-cbeb-4521-ba05-f7b87f3d49b4/0db81605-cbeb-4521-ba05-f7b87f3d49b42.gif)
![幂函数知识总结_第3页](http://file1.renrendoc.com/fileroot_temp2/2020-4/6/0db81605-cbeb-4521-ba05-f7b87f3d49b4/0db81605-cbeb-4521-ba05-f7b87f3d49b43.gif)
![幂函数知识总结_第4页](http://file1.renrendoc.com/fileroot_temp2/2020-4/6/0db81605-cbeb-4521-ba05-f7b87f3d49b4/0db81605-cbeb-4521-ba05-f7b87f3d49b44.gif)
全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
幂 函 数 复 习一、幂函数定义:形如的函数称为幂函数,其中是自变量,是常数。注意:幂函数与指数函数有何不同?【思考提示】本质区别在于自变量的位置不同,幂函数的自变量在底数位置,而指数函数的自变量在指数位置观察图:归纳:幂函数图像在第一象限的分布情况如下:二、幂函数的性质归纳:幂函数在第一象限的性质:,图像过定点(0,0)(1,1),在区间()上单调递增。,图像过定点(1,1),在区间()上单调递减。探究:整数m,n的奇偶与幂函数的定义域以及奇偶性有什么关系?结果:形如的幂函数的奇偶性 (1)当m,n都为奇数时,f(x)为奇函数,图象关于原点对称; (2)当m为奇数n为偶数时,f(x)为偶函数,图象关于y轴对称; (3)当m为偶数n为奇数时,f(x)是非奇非偶函数,图象只在第一象限内.三、幂函数的图像画法:关键先画第一象限,然后根据奇偶性和定义域画其它象限。指数大于1,在第一象限为抛物线型(凹);指数等于1,在第一象限为上升的射线;指数大于0小于1,在第一象限为抛物线型(凸);指数等于0,在第一象限为水平的射线;指数小于0,在第一象限为双曲线型;四、规律方法总结:1、幂函数的图像:2、幂函数的图像:3、比较幂形式的两个数的大小,一般的思路是:(1)若能化为同指数,则用幂函数的单调性;(2)若能化为同底数,则用指数函数的单调性;(3)若既不能化为同指数,也不能化为同底数,则需寻找一个恰当的数作为桥梁来比较大小题型一:幂函数解析式特征例1.下列函数是幂函数的是( )Ay=x B.y=3x C.y=x+1 D.y=x练习1:已知函数是幂函数,求此函数的解析式练习2:若函数是幂函数,且图象不经过原点,求函数的解析式题型二:幂函数性质例2:下列命题中正确的是( )A当时,函数的图象是一条直线 B幂函数的图象都经过(0,0),(1,1)两点 C幂函数的图象不可能在第四象限内 D若幂函数为奇函数,则在定义域内是增函数练习3:如图,曲线c1, c2分别是函数yxm和yxn在第一象限的图象,那么一定有( )Anm0 Bmnn0 Dnm0练习4:(1)函数y的单调递减区间为( )A(,1) B(,0) C0,) D(,)(2)函数yx在区间上 是减函数(3)幂函数的图象过点(2,), 则它的单调递增区间是 题型三:比较大小.利用幂函数的性质,比较下列各题中两个幂的值的大小:(1),;(2),;(3),;(4),.经典例题:例1、已知函数为偶函数,且,求m的值,并确定的解析式例2、若,试求实数m的取值范
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 杭州浙江杭州市临平区沾桥中学招聘2024学年第二学期临时聘用教师笔试历年参考题库附带答案详解
- 2025年中国塑料链条市场调查研究报告
- 2025年金融查询机外壳项目可行性研究报告
- 2025至2031年中国非离子表面活性剂行业投资前景及策略咨询研究报告
- 2025年竹杓项目可行性研究报告
- 2025至2031年中国皮箱包袋行业投资前景及策略咨询研究报告
- 2025年汽车电工电子实验箱项目可行性研究报告
- 2025年快速诊断联检板项目可行性研究报告
- 2025年复合编织袋项目可行性研究报告
- 2025至2031年中国仿丝花型膜行业投资前景及策略咨询研究报告
- 2025版茅台酒出口业务代理及销售合同模板4篇
- 新版《医疗器械经营质量管理规范》(2024)培训试题及答案
- 2025年人教版数学五年级下册教学计划(含进度表)
- 北师大版七年级上册数学期末考试试题及答案
- 初中信息技术课堂中的项目式学习实践研究结题报告
- 《工业废水臭氧催化氧化深度处理技术规程》(T-SDEPI 030-2022)
- 2024安全事故案例
- 生日快乐祝福含生日歌相册课件模板
- 2024-2025学年人教版数学六年级上册 期末综合卷(含答案)
- 天津市部分区2023-2024学年高二上学期期末考试 物理 含解析
- 2024年考研管理类综合能力(199)真题及解析完整版
评论
0/150
提交评论