对应分析spss例析.docx_第1页
对应分析spss例析.docx_第2页
对应分析spss例析.docx_第3页
对应分析spss例析.docx_第4页
对应分析spss例析.docx_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

对应分析spss例析在现实研究中,研究人员很多情况下所关心的除行和列本身变量之间关系外,更想了解行列变量之间的相互关系;将R和Q型分析合二为一;对应分析应运而生。对应分析(Correspondence analysis)也称关联分析、R-Q型因子分析,是近年新发展起来的一种多元相依变量统计分析技术,通过分析由定性变量构成的交互汇总表来揭示变量间的联系。可以揭示同一变量的各个类别之间的差异,以及不同变量各个类别之间的对应关系。 主要应用在市场细分、产品定位、地质研究以及计算机工程等领域中。原因在于,它是一种视觉化的数据分析方法,它能够将几组看不出任何联系的数据,通过视觉上可以接受的定位图展现出来。 对应分析的基本思想是将一个联列表的行和列中各元素的比例结构以点的形式在较低维的空间中表示出来。 它最大特点是能把众多的样品和众多的变量同时作到同一张图解上,将样品的大类及其属性在图上直观而又明了地表示出来,具有直观性。另外,它还省去了因子选择和因子轴旋转等复杂的数学运算及中间过程,可以从因子载荷图上对样品进行直观的分类,而且能够指示分类的主要参数(主因子)以及分类的依据,是一种直观、简单、方便的多元统计方法。 对应分析法整个处理过程由两部分组成:表格和关联图。对应分析法中的表格是一个二维的表格,由行和列组成。每一行代表事物的一个属性,依次排开。列则代表不同的事物本身,它由样本集合构成,排列顺序并没有特别的要求。在关联图上,各个样本都浓缩为一个点集合,而样本的属性变量在图上同样也是以点集合的形式显示出来。例:在对218名受访人员进行收入水平和品牌选择关系的调查研究中,得到如下调查数据,对其进行对应分析。SPSS需要的数据格式如下DATA -weight casesAnalyze-data reduction-correspondence analysisModel对话框中Dimensions in solution 2,解的维度;即将样本和指标在二维空间中对应的进行分类。Distance measure:距离测度上采用默认的Chi square,标准对应分析要求使用此测度。Standardization method正规化方法选择上,由于上面选择的是卡方距离,所以这里只能用row and column means are removed(即同时对行和列进行中心化处理)Statistic 对话框中Correspondence table现实原始数据,还包括行列的边际和及总和;可以用来核对输入的数据的准确性。Overview of row/column points:此项必须选择,行列变量在各个维度上的分量。Plot 对话框:Bioplot双维图法,输出行列变量坐标的二维图。下面两个选项是本图的分列。Correspondence Table品牌收入水平低 中 高 Active MarginA 271625B 497359C 452332D 449558E 152522F 171422Active Margin757766218核对输入数据的正确性Row Profiles品牌收入水平低 中 高 Active MarginA .080.280.6401.000B .831.119.0511.000C .125.156.7191.000D .069.845.0861.000E .682.091.2271.000F .045.318.6361.000Mass.344.353.303行归一化处理表:行和为分母进行归一化处理的结果,mass为列的边际概率,即各列和占总和比例。SummaryDimensionSingular ValueInertiaChi SquareSig.Proportion of InertiaConfidence Singular ValueAccounted forCumulativeStandard DeviationCorrelation21.729.531.608.608.047.1652.586.343.3921.000.058Total.874190.534.000a1.0001.000a. 10 degrees of freedominertia英音:in:i美音:n 惯性;惯量;惰性;就是常说的特征根;说明各个维度对原来列联表的解释程度 。 Contribution Of Point to Inertia of Dimension给出的是占总方差的百分比及累计百分比;可以看出前两个维度解释了总信息量的100%;因此二维图形完全可以表示两个变量间的信息。第三第四列是列联表的卡方检验结果,P0.05,表明列联表行列变量之间存在较强的相关性;这就为研究行列变量的相互关系提供了依据,可以进行对应分析。品牌坐标Overview Row Pointsa品牌MassScore in DimensionInertiaContribution12Of Point to Inertia of DimensionOf Dimension to Inertia of Point1212TotalA .115.620-.731.068.061.105.472.5281.000B .271-85.530.011.987.0131.000C .147.496-1.047.120.049.275.218.7821.000D .266.7251.074.282.192.524.362.6381.000E .101-.843-.215.055.098.008.950.0501.000F .101.708-.672.064.069.078.580.4201.000Active Total1.000.8741.0001.000a. Symmetrical normalizationscore in Dimension:在两个维度上的的分值,也就是在平面直角坐标系中的坐标;收入坐标Overview Column Pointsa收入水平MassScore in DimensionInertiaContribution12Of Point to Inertia of DimensionOf Dimension to Inertia of Point1212Total低 .344-1.177.051.348.654.002.999.0011.000中 .353.664.847.262.214.433.433.5671.000高 .303.563-1.046.264.132.566.26

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论