




已阅读5页,还剩173页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第五章 热量传递的基本定律及应用北京理工大学郑宏飞 本章与前些章节的不同点 热能的利用问题引入了 工程热力学问题 不考虑传递时间 假定系统是处在平衡态 热量的传递问题引入了 传热学问题 在有限时间内 考虑了温度不平衡引起的传热过程 学习前面的工程热力学 知道系统与系统之间会发生能量交换 主要是功和热 但上面讨论的是相互作用过程的最终状态 而不讨论过程的性质及发生的速率 本章主要是研究热的传递过程及速率 还有就是如何提高或减少它的传递速率 传热强化和隔热 基本概念 1 传热是由于温差引起的能量转移 有温差就有传热2 传热的多种形式 主要有三种形式 1 热传导 导热 物体内有温差或两个温度不同的物体接触时 在物体各部分之间不发生相对位移的情况下 依靠物质微粒的热运动传递热量的现象称为热传导 通过固体或静止流体间的传热以导热为主 导热是固体内部传热的唯一方式 比如 当固体物质两面的温度不同时 就有热量流过固体 研究发现 导热速率的大小可用下式表示 是温度差 是热量传递的距离 是与导热物质有关的参数 叫热导率 2 对流 有温差存在时 由于流体流动 宏观或微团流动 引起的热量传递 当 最简单的情况 用下式计算其中 是对流换热系数 w m2 A是换热面积 m2 上式是指由表面至运动流体间的换热 是计算对流换热量的关键参量 与许多因素有关 3 辐射因热的原因而向外发射电磁波的现象称为热辐射 它与对流 传导传热均不同 它是表面之间的热辐射换热 不需要中间物质 比如 太阳 地球之间的传热 任何高于0oK的物质都有向外发射电磁波的能力 温度越高发射能力越强 任何物体也有接受热辐射的能力 能全部接受投射到其表面上的热辐射的物体称为绝对黑体 绝对黑体发射热辐射的能力为 斯蒂芬 玻尔兹曼常数 A为发射面积 实际物体要更低 为黑度 1 1 流体中也有导热 甚至是纯导热 4实际传热多是几种传热方式的组合及相互作用的结果 太阳池 一种太阳能利用的新装置 2 传质也能带动传热 蒸发冷凝 第一节导热 导热是不透明无气孔的固体中热能传递的唯一方式 热量流动的方向是由高温传至低温 导热可分为两大类 1稳态导热2非稳态导热 在某一瞬间 物体内各点的温度分布称为温度场 稳态导热中 物体内每一处的温度都是不随时间变化的 因此 温度场只是空间坐标的函数 非稳态导热的温度场还与时间有关 如果热量传递只在一个方向上进行 称为一维导热 此时描述其过程最简单 或 大量试验证明 导热速率Q是和温度的梯度及热流通过的面积A m2 成比例的 即 为温度梯度 温度沿等温面法线的变化率 还发现 对不同的物体和相同的传热面积A及相同的温度梯度 Q有不同值 但对各向同性的物体有 是导热物质的导热系数 单位 W m K 跟物质的属性有关 上式称傅立叶传热定律 也是导热系数的定义式 负号表示热能总是从高温处传至低温处 或说热能总从高温物体流向低温物体 沿热能传递方向 温度总是降低的 Q总是取正值的 单位面积上的热能传递速率称为 热流密度 在一维坐标系中 上式可化简为 变得非常简单 1 1通过平板的稳态导热计算 设有厚度为 的无限大平板 由于长 宽 所以等温面是与两侧面平行的 热量只沿一个方向流动 此时 单位面积的热流为 其中 负号表示热流向温度减小的方向 为导热系数 如果平板是均匀的 里面没有热源也无热壑 热汇 那么 在x方向上 任何一处的q应该是相等的 所以q 常数 如果已知传热面积A 则总的传热量 在电路中 电流是由电压引起的 欧姆定律 那么 热量关系式也可变为 因此 可引入一个热阻的概念 单位面积上的热阻 用热阻来分析各种传热过程是很方便的 物理概念清晰 计算简便 1 2多层平板导热 若厚度远小于高 宽 多层平板也是一维导热 在稳态下 通过每层壁的导热率应是相同的 但各层导热系数不同 所以各层的温度梯度也各异 通过每一层的导热率可表示为 由于只有T1和T4比较容易测量 上式改写成 上面的三式相加 得 对n层板的结合体 对单位面积来说 这相当于电路中的一个串联电路 总热阻等于各分热阻之和 其实 有了热阻的概念后 即可对一些复杂的壁进行传热计算 比如 这是一个串 并结合的热路 B C是并联 并联热阻与并联电阻的阻值计算相同 1 3通过圆管及球体的导热 设有长度为l 内外半径分别为r1和r2的一层圆筒壁 且l r2 无限长圆筒 在稳态工况下 取半径为r的一层圆柱面分析 在圆柱面上 热量流动方向与圆柱面垂直 因此对单位长度的圆柱面 可以得到如下方程 注意 流出任意圆柱面的热量Q应是恒定的 应为 积分 单位管长的热流密度为 对于多层套管组成的系统 可用热阻串联关系求得 比如 两层壁 作业 P144 1 2题 对球形容器 热量沿半径方向流动 内半径r1 外半径r2 在任意半径r处 与热流方向垂直的截面积为 球形容器热阻为 1 4通过等截面延伸表面的导热 延伸表面在各种换热器中经常用到 它起到强化传热的作用 我们知道 固 气或固 液表面之间有对流换热 所以 接触面积越大 Q越大 所以延伸表面起到增强传热面积的作用 不同截面积的延伸表面的传热问题是复杂的 最简单的一种是等截面的延伸表面 设截面积为A 长为l 周长为U 周围流体温度为Tf 对流换热系数为 基部温度T0 导热系数为 它沿长度方向导热时 还要与周围流体对流换热 一般是二维或三维问题 但当 很大时 可看作一维 这时沿长度方向上 棒内的传热量是变化的 设在x处传热密度为 Qx 则 在x dx处的传热量减小 变为 x到x dx过程中 表面与周围流体的换热量为 在稳态条件下 能量平衡为 减少量 向周围流体传热量 又因为 令 有时候称为过剩温度 过余温度 则变为 这是导热的微分方程 其通解为 C1和C2为两个积分常数 由边界条件决定 据此 即可求出C1 C2 比如 已知 如果我们知道了这种办法 对其他变截面的延伸表面 也可写出微分方程 求解即可 有时方程的解不好确定 可用试探解法 2 3非稳态导热 我们知道 传热介质中的温度分布一般为 在非稳态导热中 介质温度场是随时间变化的 即使是一维的 比方说是无限大平板 此时温度分布变为 由于 因此 不能当作热流是常数的情况 必须另想办法 我们研究热传导的目的 1求介质中的温度分布2求传热量 一般情况下 在介质体内可能还有热源 由于温度的变化介质体还有能量贮存问题等 所以 非稳态导热是非常复杂的 对于一大块物质来说 为了研究其中的温度分布 首先建立坐标系 看看如何写出温度方程 在 x y z 处 取一个小体元来考虑 边长分别为 dx dy dz 从能量守恒定律我们知道 流入微元体的总能量 微元体内生成的热量 流出微元体的总热量 微元体内能的增量 即 我们知道 沿任意方向的热流总可分解成x y z三个坐标轴方向上的分热流量 因此 可分别求出流入微元体的热量 在x方向 同理 导出微元体的热量为 同理 设介质内单位体积内的生成热速率为所以 在单位时间内 微元体内的生成热为 微元体内能的增量 代入能量守恒方程 即得 这里假定了 cp 都是常数 式中 称为热扩散率 又称为导温系数 因为当a大时 温度变化快 是个物性参数 上式是常温物性的导热问题最普遍适用的方程 如果没有内热源 即当 0时 方程变为 如果又是稳态情况 则 上式变为 一维问题 所以 一维稳态时 上面我们给出了三维最普遍的非稳态导热方程 一般情况下 它是非常复杂的 一般很难求出解析解 然而计算机的发展为解这类问题提供了方便 一般可以数值解 解这类方程还需要知道它的边界条件和初始条件 边界条件和起始条件 1 热流方程中 对空间坐标的求解是二阶的 所以对每个坐标必须给出两个边界条件 2 对时间求导是一阶的 所以给出一个确定条件即可 初始条件 第一类边界条件 给定边界上的温度值 0时 最简单 第二类边界条件 给定边界上的热流密度值 0时 绝热的话 该常数为0 第三类边界条件 给定边界上与周围流体的对流换热系数及流体温度 这里 都是未知的 由于二维非稳态问题很多 为了方便 已将解画在图上 诺漠图 可以直接用 自己看书 2 4集总热容法 对于一般的非稳态导热 我们当然要根据上面的方程并列边界条件和初始条件进行求解 但一般是很困难的 然而 对有些情况 却不一定要列那么复杂的方程 也可得出近似解 集总热容法即是一个很好的近似求解办法 当一个固体物与周围流体换热 它一般要经历两个步骤 1 将热通过与边界的对流传给固体 2 固体内经导热 使内部温度均匀 金属件的淬火就是一个典型例子 亦即是说 边界上是对流热阻 内部是导热热阻 一般对金属物体来说 很大 而与周围流体的换热系数不一定很大 亦即有很多时候 也就是说 热量通过边界传给物体后 物体内很快就将它扩散到了整个物体中去了 这时物体内的温度梯度是很小的 极端情下 显然是不可能的 尽管如此 作为一种近似 我们可做这样假设 此时 物体内温度是均匀的 物体内能的变化就等于表面的传热 所以 引入过余温度 则上式变为 式中 A是面积 V是体积 Cp是比热 积分 得 其中系数 这就可以用来求达到某个温度所用时间 或计算某时刻的温度 还可求得 时刻交换的总热量 2 5集总热容法得可用性 优点 是最简单 最方便的求解方法 因此 要确定什么情况下使用它能达到合理的精度 我们知道 固体与外流体换热要经历两个步骤 1 壁面的对流换热 2 内部的导热 当内部导热明显快于外面对流时 可用集总热容法 对流换热热阻 内部导热热阻 对平板来说 L是半厚度 对不是平板来说 L是反映物体尺寸大小的一个特征量 称作特征尺度 具有长度的量纲 令 称毕奥数 无量纲量 显然 当Bi 1时 可用集总热容法 一般 当Bi 0 1时 物体内各点温度差别小于5 因此 把Bi 0 1称为集总热容可用的条件 特征尺度 对不规则的物体应为 体积与表面积之比 对2 厚的平板 半径为R的圆柱 对半径为R的球体 节点初始温度为25 C 被置于200 C的气流中 问 欲使节点温度达到199 C 需要多长时间 例 球形热电偶节点置于气流中测量温度 已知节点表面与气流间的对流换热系数 400W m2 K 节点物性参数分别为 20W m K Cp 400J kg K 8500kg m3 解 先求比奥数 因此 用集总热容法可得到很准确的结果 作业 P146 17题 达到199 C所需的时间是 5 3对流换热 对流换热是流体流过固体壁面时 由于两者温度不等所发生的热量传递过程 1 这种现象非常普遍 2 可分为强迫对流和自然对流 例如 如果tw不等于tf 我们知道将会发生对流换热 表面积A 在固体上某一面积A与流体的换热量q可表示为 是对流换热系数 单位 W m2 C这里Q总是取正值 如果如果这就是著名的牛顿冷却公式 对整个物体表面而言 上述Q 应是逐点变化的 因为固体表面的流动情况及温度情况不一定相同 对总热流来说应是 如果固体表面温度是均匀的 那么 定义一个对整个表面的平均对流换热系数 则总热流为 显然 局部对流换热系数与平均对流换热系数的关系为 总而言之 对整体来说 仍有牛顿冷却公式的形式 由于对流与流速 流体物性参数 固体形状和位置等有关 所以 的值是较难确定的 上式也可作 的定义式 通常都把对流换热过程的一切复杂性和计算上的困难都集中到了求换热系数上 3 1流动边界层和热边界层 流动对换热有非常明显的影响 所以先分析流体在换热面附近的流动情况 1 流动边界层 先考察流体流过平板的情况 1 在紧贴固体表面上的流体被滞止 由于摩擦或粘性 2 由于粘性力使近壁面处的流体速度减小 随着流动的深入 这种粘性还会影响到离壁面更远的地方 如果能用仪器或用示踪的方法 就能看到如上图所示的速度分布曲线 从y 0处 u 0 开始 u随离壁面的距离y的增加而增大 经过一个薄壁层后 u增加到接近主流速度uf 常把这个速度急剧变化的薄层称为流动边界层 并规定u达到uf的99 处的y值作为边界层的厚度 记为 显然 也是随着流动的深入而变化的 根据牛顿粘性定律 粘性力 与垂直于运动方向的速度变化率成正比 即 称为流体的动力粘度 kg m s在边界层内 由于很大 所以 不能忽视 沿固体壁流动 边界层内的流动情况也会变化 开始 0 随着x的增加 壁面的粘性力逐渐影响到内部 所以边界层加厚 增大 但在一定距离xc以前 边界层内流动主要表现为分层 有序 滑动状流动 各层 互不干扰 保持层流特性 层流边界层 2 随着 的增加 或x xc 边界层内不稳定起来 x越大 不稳定状况越盛 最终变得绝大部分都是紊流 称为紊流边界层 3 在絮流边界层内 在紧贴壁面的极薄层内 粘性力仍占主导地位 所以在这一局部层内 仍维持为层流 称为层流底层 厚度用 c表示 2 热边界层流体掠过固体时 如果tw与tf不等 也会显现出一个沿表面法线上的温度场 如果 加热流体 流体温度由y 0处的壁面温度tw变化到主流温度tf 在这区域内 温度变化显著 我们称这个区域为热边界层 常将过余温度 tw t 等于主流过余温度 tw tf 的99 处的y作为热边界层的厚度 用 t表示 对于被冷却的流体 也有类似的边界层区 不管是加热还是冷却 热边界层都将会将流体分成了两个区 1 温度有剧烈变化的热边界层区 2 温度几乎没有变化的主流等温区 t和 是不同的概念 不一定相等 在壁面附近 由于层流速度为零 热量传递完全依靠导热 所以局部的热流密度可用傅立叶定律得到 又由牛顿冷却公式 x处对流换热系数 因此 求 x转化为求壁面上流体的温度变化率 通常又必须知道边界层内速度分布 非常复杂 上式中 x是局部换热系数 对平壁 用可求得平均对流换热系数 3 影响对流换热系数的因素对流是由流体的宏观位移的热对流和分子间的微观导热构成的 非常复杂 影响因素一般有 1 流动的起因按起因的不同 可分为强迫对流换热和自然对流换热 强迫对流换热 流体在外界压差的作用下 流过换热面 自然对流换热 流体因热胀冷缩原因产生浮升力 流过换热面所产生的对流换热 一般来说 强迫 自然当有了强迫对流时也往往有自然对流 2 流动速度u增加 减小 增大 对流热阻R 减小 流速增加时 有利于层流转换成紊流 有利于传热 3 流体有无相变无相变时 只有显热交换 壁面与流体间温差大 不利于传热 有相变时 有显热也有潜热交换 换热系数大 特别是沸腾时液体中有气泡产生和运动 增加了扰动 对流特别得到加强 4 换热面的几何形状 大小 位置由于流体掠过固体表面时 流动受几何形状的影响很大 所以对换热系数也有很大影响 5 流体的热物理性质从 可知 x 有关 除此之外 还与反映微团浮升力大小的 有关 还与微团的携带热量能力的Cp有关 又由于 所以 还与 有关 综上所述 l 反映换热面大小几何尺寸的特征参数 流体的容积膨胀系数 单位1 k 壁面的几何形状因素 形状位置等 所有问题都归结为求 影响 有8个因素之多 是非常复杂的 一般情况要作很多假设才可以理论求解 但是很难推广使用 另一种是试验解法 但试验工作量非常大 因为有许多因素要确定 为了尽量减少自变量的个数 而将反映一个方面的影响归结为一个无量纲数 由此推出了下面的准则方程 3 2量纲分析方法 影响对流换热的因素很多 理论解法有困难 试验解也很难 因为每个因素都要考虑到 为了尽可能考虑到主要矛盾而忽略次要矛盾 进行量纲分析 对所有物理公式 两边的量纲都是相等的 基于这种思想 提出了量纲分析方法 对于换热问题 选定五个基本量纲 时间 T 长度 L 质量 M 温度 热量 Q 其它量纲均可由它们表出 密度 ML 3 动力粘度 MT 1L 1 QL 1T 1 1 等等 对于对流换热系数方程 总可变换为这样一个方程 到此 如何利用量纲分析法呢 如果知道了一些参数 解这个方程 就可以求得对流换热系数 定理 一个表示n个物理量间关系的方程式 一定可转化为包含n r个独立的无量纲数群间的关系式 r是指n个物理量中涉及到基本量纲数目 上方程中 7个变数中 有4个基本量纲 M L T Q 先介绍一个定理 因此 据 定理 n r 3 可用三个无量纲关系式来表示 即 到这一步还不能得到什么实质的东西 将 1 2 3表示成 的表示原则 包括所有量纲 但自身又必须是无量纲数 解量纲方程 注意 必须是无量纲的 比如 所有量纲指数是零 得 Nusseltnumber 同理 Reynoldsnumber Prandtlnumber 所以 就可变化为 也可变为 因此 求解对流换热系数问题 就可转换为探寻Nu Re Pr相互关系问题 虽然 Nu Re Pr是从无量纲方程推导来的 但它们都有自己的物理含义 下面我们再讨论它们的物理含义 1 雷诺数 Reynoldsnumber 注意 为动力粘度 为运动粘度 它反映了流体流动时 惯性力和粘性力的相对大小 是两者之比 当u大时 惯性力大 Re大 流体运动就激烈 换热强 它反映了流体受迫流动状态对换热的影响 2 努谢尔数 Nussertnumber它是对流换热和厚度l的流体层的导热之比 导热热阻 对流热阻 Nu数越大 也越大 对流也强烈 所以 它是一个表示对流强弱的数 3 普朗特数 Prandtlnumber它由流体的物性参数组成 表征物性对换热的影响 Pr大 必然 大 而a小 如各种油类 Pr小 小 a大 换热能力强 如各种金属流体 更深层次地讲 分子动量和热扩散系数之比 4 格拉小夫数 它是浮升力与粘性力之比 在自然对流换热中 浮升力起主要作用 是流体流动的起因 因此 考察浮升力与粘性力的相对大小 有利于确定换热的强弱 理想气体 T为绝对温度 为流体的热膨胀系数 反映了温差造成密度差引起浮升力大小 有了这些准则或数之后 求得了Nu数 通过 即可求出 从而计算对流 在实验中 通常将这些数的关系表示为 于是 试验就是确定m n s等系数 有了这些系数即可计算对流 特征长度的选取要注意 书上有介绍 3 3强迫对流换热及其试验关联式 3 3 1管内强迫对流换热 流动和换热特征 热边界层与此类似 流动边界层 流动定型段中 是层流还是紊流 可用Re的数值确定 Re104为紊流用截面平均温度计算 1 紊流换热当时 关系式为 下标 f 表示用流体平均温度计算 进出口平均温度 系数 el 考虑入口段影响的修正系数 时 el 1的管道 系数 et 考虑管道截面上温度分布不均匀对流体流动影响的修正系数 一般影响很小 et 1 但当有大温差存在或要精确计算时要考虑 流体被加热 流体被冷却 气体被加热 气体被冷却 下标 eR 弯道对换热影响的修正系数 直管 弯管时 对气体 对液体 2 层流换热流动缓慢 管壁光滑时 可以是层流 当 w以平均壁温计算 其余各量均以平均流体温度计算 已考虑了入口和温度不均的影响 直接使用 注意 计算中 只给出入口处温度 而计算物性时 要用tf 而出口温度又不知道 怎么办 可假设出口温度 先计算 然后修正 3 3 2外掠物体时的强迫对流换热 1 纵掠平壁最简单 也与试验最符合 当 局部对流换热系数 x 总体平均对流换热系数 流体与壁面的平均温度 特征长度为x和l 当 紊流边界层 2 横掠单管c n为常数 随Rem的取值不同而不同 见表P123对横掠非圆形柱体时 有类似计算公式 但c n取值不同 此外 还有横掠管束及槽道内流动的 今忽略不讲 但类似有公式 3 4自然对流换热系数及其试验关联式 自然对流是由流体受热膨胀而产生密度差 在浮升力的作用下进行的 竖板上的自然对流引起的边界层与流体流过平板产生的边界层类似 也分层流区 过渡区和紊流区 对于自然对流不受空间限制的情况 m表示定性温度为流体与壁面的平均温度 c n为常数 由试验确定 对不同的情况有不同的值 比如 热面朝上或冷面朝下的壁面 层流 紊流 特征尺度l取 平板面积与周长之比 圆盘取0 9d 3 5凝结和沸腾的对流换热 凝结和沸腾都是有相变的对流换热 它的特点是流体温度不变 但换热系数却很大 小温差相变传热 1 凝结当饱和蒸汽同低于饱和温度的壁面接触时 就会有凝结发生 蒸汽变成液体同时放出潜热 在竖板上凝结 上段 层流重力作用下向下流动液膜加厚速度加快紊流 凝结液如果能很好地润湿表面 称为膜状凝结 凝结液如果不能很好地润湿表面 在表面上形成液珠 称为珠状凝结 2 沸腾一般液体在大容器中的沸腾都可分为如图几个阶段 1 在A点前 称为自然对流区 只有自然对流 服从单相自然对流规律 2 从A到C段 称为核态沸腾区 A点开始 有气泡产生 在B点前 气泡是独立的 称为孤立气泡区 BC段 气泡会相互影响 形成大块气泡 在AC点 由于气泡的扰动 急剧增大 3 CD段 称为过渡沸腾区从C点后 提高 t q不增加 反而降低 这是因为气泡汇聚在壁面上 阻止了热量传递 从而q减小 4 DE段 称为稳定膜态沸腾区 t增大 q增加 蒸汽稳定离开壁面 工程上 C称为临界点 qmax称为烧毁点 要避免的 5 4辐射换热 1 任何高于绝对零度的表面都会不断发出热辐射 2 热辐射也是一种电磁波 与可见光 紫外线等性质相同 3 当热辐射投射到物体表面时 与可见光一样 也发生吸收 反射 透射 令为吸收率 令为反射率 令为透射率 因此 它们在0 1之间变化 显然 吸收大 则反射和透射就小 非金属 吸收小 如不透明 则反射大 金属 1的物体 吸收全部能量 绝对黑体 不存在 1的物体 反射全部能量 绝对白体 也不存在 1的物体 绝对透明体 也是假想物体 5 4 1热辐射的基本定律 1 斯蒂芬 玻尔兹曼定律单位时间单位面积的黑体向半球空间发射的总能量Eb与黑体温度的关系为 单位 W m2 b表示黑体 blackbody 单位 W m2K4 一切实际物体的辐射能力都小于同温度下的黑体 把物体的热辐射能力E与同温黑体的辐射能力Eb之比称为黑度 对实际物体来说 2 基尔霍夫定律 吸收率 与黑度是反映辐射换热中能量收支的两个指标 得到 e 发出它们的关系如何呢 考虑一个实际壁与黑体壁间的换热 Eb 实际物体发出的能量为E 被完全吸收 而它接收能量则为 含有反射 1 Eb 所以 实际物体的净得热量为 如果出于热平衡 这时 显然 这个比值与物性无关 只要是平衡的 总成立 它就是基尔霍夫定律的数字表达式 在热平衡条件下 任何物体的辐射力与其吸收率之比 恒等于同温下黑体的辐射力 说明 1 吸收能力强的物体 发射能力也强 2 3 e 与黑度定义对照 也是基尔霍夫定律的另一表达式 任何物体对黑体辐射的吸收率等于同温下该物体的黑度 5 4 2黑体间的辐射换热和角系数 有两个任意表面 因为每个表面发射出来的能量 都只有一部分到达另一个表面 其它的能量都辐射到其它空间去了 定义 表面1发出的辐射能量落在表面2上的百分数称为表面1对表面2的角系数 记为X1 2 取决于几何条件 方位等 同理也可定义表面2对表面1的角系数X2 1于是 单位时间从表面1发出 到达表面2的辐射能为 Eb1A1X1 2 表面2表面1的辐射能为 Eb2A2X2 1 净换热量 在平衡条件下 角系数作为几何因子上式表示两表面在辐射换热时 角系数的相对性 尽管在热平衡时求得 但可推广到任意情况 有了角系数的相对性 那么 在任何不同温度下 Rr 空间辐射热阻 两个黑体之间可用上述公式计算辐射换热 关键在于确定角系数 角系数的特性及其确定 1 角系数的相对性已知其中一个角系数 由上式可求得另一个角系数 2 角系数的完整性对封闭空间 任何一个表面对其它表面的角系数之和为1 3 角系数的分解性 也有
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030餐桌餐椅行业市场现状供需分析及投资评估规划分析研究报告
- 2025-2030非聚氯乙烯静脉注射袋行业市场现状供需分析及重点企业投资评估规划分析研究报告
- 2025-2030辐射屏蔽与监测设备行业市场现状供需分析及投资评估规划分析研究报告
- 计算机二级考试特训试题及答案
- 适应变革2025年乡村全科执业助理医师试题及答案
- 西医临床考试纵深剖析试题及答案
- 项目管理在信息系统领域的创新实践试题及答案
- 黑体熊猫测试题及答案
- 钱钟书人物课件
- 2025年料位传感器项目合作计划书
- 简约喜庆元宵节介绍模板 教学课件
- TCCIAT 0043-2022 建筑工程渗漏治理技术规程
- 西藏林芝嘉园小区项目可研(可研发)
- GB∕T 14527-2021 复合阻尼隔振器和复合阻尼器
- 航运系统组成和航运企业组织结构及特点
- 丧假证明模板
- 隧道二衬、仰拱施工方案
- 按期取得毕业证和学位证承诺书
- Q∕GDW 12106.4-2021 物联管理平台技术和功能规范 第4部分:边缘物联代理与物联管理平台交互协议规范
- 第五章 学校教育的主要活动形式:课堂教学
- 大会—冠脉微循环障碍
评论
0/150
提交评论