高三年级质量调研数学试卷 标准答案1104B.doc_第1页
高三年级质量调研数学试卷 标准答案1104B.doc_第2页
高三年级质量调研数学试卷 标准答案1104B.doc_第3页
高三年级质量调研数学试卷 标准答案1104B.doc_第4页
高三年级质量调研数学试卷 标准答案1104B.doc_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2010学年度第二学期普陀区高三质量调研数学试卷参考答案 201104一、填空题(满分56分):1. ; 2. 理:3; 文:; 3. ; 4. ; 5. ; 6. ; 7. 32; 8. 理:-6;文:5; 9. 或; 10. 理:;11. ;12. 理:;文:; 13. 理:(2,2012);文:; 14. 1028.二、选择题(满分20分): 题号15161718答案CCDA三、解答题: 19.(本题满分12分)解法一:因为 ,得 ,所以 . 若实系数一元二次方程有虚根,则必有共轭虚根, 因为,故所求的一个一元二次方程可以是.解法二:设,则 , ,以下解法同解法一.20.(本题满分14分)解:争议的原因是收费标准中对于“每小时按加价50%收费”的含义出现了歧义。以下给出三种不同的理解:解释一:第一小时为10元,以后每小时都为15元.14小时总收费为:元;解释二:第一小时为10元,以后每小时都比前一小时增加5元.可以理解为等差数列求和,则14小时总收费为元.解释三:第一小时为10元,以后每小时都增加50%.可以理解为等比数列求和,则14个小时的收费为元.【说明】以上三种解释中能任意给出两种即可得满分.21. (本题满分14分)(理科)解:(1)以点为坐标原点,射线分别为的正半轴建立空间直角坐标系如图示,点、,则,.设异面直线与所成角为第21题图xyz,所以异面直线与所成角大小为.(2)假设在线段上存在一点满足条件,设点,平面的法向量为,则有 得到,取,所以,则,又,解得,所以点即,则.所以在线段上存在一点满足条件,且长度为.(文科)解:(1)由题意,当时,此时,都为单位向量.故,所以.(2) 由条件因为向量和向量共线,所以,因为,所以.于是,设向量和的夹角为则,即向量和的夹角为.22.(本题满分16分)(理科,同文科23题)解:(1)由得,则,任取,都有,则该函数为奇函数.(2)任取,则有,.又,所以,即,故函数在区间上单调递减.(3)由程序框图知,公差不为零的等差数列要满足条件,则必有。由(1)知函数是奇函数,而奇函数的图像关于原点对称,所以要构造满足条件的等差数列,可利用等差数列的性质,只需等差数列满足:且即可.我们可以先确定使得,因为公差不为零的等差数列必是单调的数列,只要它的最大项和最小项在中,即可满足要求. 所以只要对应的点尽可能的接近原点.如取,存在满足条件的一个等差数列可以是. 【说明】本问题结论开放. 我们可以将问题解决的方法一般化.设,若,可得.而由题意,需().同理,若,则需.(文科) (1)证法一:由题意,原点必定在圆内,即点代入方程的左边后的值小于0,于是有,即证.证法二:由题意,不难发现、两点分别在轴正负半轴上. 设两点坐标分别为, ,则有. 对于圆方程,当时,可得,其中方程的两根分别为点和点的横坐标,于是有.因为,故.(2)不难发现,对角线互相垂直的四边形面积,因为,可得.又因为,所以为直角,而因为四边形是圆的内接四边形,故. 对于方程所表示的圆,可知,所以.(3)证:设四边形四个顶点的坐标分别为,. 则可得点的坐标为,即.又,且,故要使、三点共线,只需证即可.而,且对于圆的一般方程,当时可得,其中方程的两根分别为点和点的横坐标,于是有.同理,当时,可得,其中方程的两根分别为点和点的纵坐标,于是有.所以,即. 故、必定三点共线.23. (本题满分18分)(理科)解:(1)因为对角线互相垂直的四边形面积,而由于为定长,则当最大时,四边形面积取得最大值. 由圆的性质,垂直于的弦中,直径最长,故当且仅当过圆心时,四边形面积取得最大值,最大值为.(2)解法一:由题意,不难发现,当点运动到与圆心重合时,对角线和的长同时取得最大值,所以此时四边形面积取得最大值,最大值为.解法二:设圆心到弦的距离为,到弦的距离为,的距离为.则,且.可得又,当且仅当时等号成立.所以,当且仅当时等号成立.又因为点在圆内运动,所以当点和圆心重合时,此时,故此时四边形的面积最大,最大值为.不难发现,此时该四边形是圆内接正方形,对角线交点与圆心重合.(3)类比猜想1:若对角线互相垂直的椭圆内接四边形中的一条对角线长确定时,当且仅当另一条对角线通过椭圆中心时,该椭圆内接四边形面积最大.类比猜想2:当点在椭圆中心时,对角线互相垂直的椭圆内接四边形的面积最大.以上两个均为正确的猜想,要证明以上两个猜想,都需先证:椭圆内的平行弦中,过椭圆中心的弦长最大.证:设椭圆的方程为(),平行弦的方程为,联立可得不妨设、,则 由于平行弦的斜率保持不变,故可知当且仅当时,即当直线经过原点时,取得最大值(*).特别地,当斜率不存在时,此结论也成立.由以上结论可知,类比猜想一正确。又对于椭圆内任意一点构造的对角线互相垂直的椭圆内接四边形,我们都可以将对角线平移到交点与椭圆中心重合的椭圆内接四边形,而其中,所以必有.即证明了猜想二也是正确的.n 类比猜想3:当点在椭圆中心,且椭圆内接四边形的两条互相垂直的对角线恰为椭圆长轴和短轴时,四边形面积取得最大值.要证明此猜想,也需先证“椭圆内的平行弦中,过椭圆中心的弦长最大.”在此基础上,可参考以下两种续证方法.证法一:当点在椭圆中心时,不妨设对角线所在直线的斜率为.(i)当时,即为椭圆长轴,又,故是椭圆的短轴. 所以此时椭圆内接四边形的面积为.(ii)当时,对角线的斜率为.由此前证明过程中的(*)可知,,若将代换式中的,则可得弦的长度,.所以,由,则,综上(i)和(ii),故可证明猜想三正确.证法二:如图,四边形对角线交点与椭圆中心重合.y由对

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论