三年级奥数.计数综合.枚举法.学生版.doc_第1页
三年级奥数.计数综合.枚举法.学生版.doc_第2页
三年级奥数.计数综合.枚举法.学生版.doc_第3页
三年级奥数.计数综合.枚举法.学生版.doc_第4页
三年级奥数.计数综合.枚举法.学生版.doc_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

枚举法(一)课前预习胖子的枚举法几个人又坐回到自己的座位上,都是唉声叹气,我让他人省点力气,其实这样盲目的试验,反而会导致思维的中断。接着事情又回到我睡觉前,我们又开始毫无意义的讨论起来。讨论中总是有人睡过去,但是好在一个人睡觉,其他几个人都能继续思考。就这样,我们东一个想法,西一个想法,提出来,然后否决掉,一开始说法还很多,后来几个人话就越来越少,时间不知不觉就过去了六七个小时,我们的肚子又开始叫起来。最后胖子点起一只烟,想了想,对我们说:“不行,咱们这么零散的想办法是很浪费时间的,我们把所有的可能性全部都写出来,然后归纳成几条,之后直接把这条验证,不就行了。”我点点头,其实说到最后很多的问题我们都在重复的讨论,几个人都进入到一种混乱状态了胖子在金器铺满的地面上整理出一块石头面,然后写下来几个数字:1、2、3、4,然后说:“我们想想我们现在有几种假设,你们都回忆一下,不要具体的,要大概的方向就行了。”潘子就道:“最有可能就是有机关。”胖子在1那个地方写了机关。然后顺子就说道:“你的想法,可能有东西在影响我们的感觉,比如说心理暗示或者催眠,让我们自己不知不觉的走回来。”胖子对他道:“不用说这么详细。”按着在2的后面写了错觉,然后看向我。我道:“要说理论上,也有可能是空间折叠。”“你这个不可能,太玄乎了。”潘子道。胖子道:“不管,有万分之一地可能性,我们就承认,我们只是列一个备忘录而已。”说着也写了上去,在3后面写了空间折叠。然后自己说:“也可能是有鬼。”说着写了个4,有鬼。“你这样写出来有什么意义?”潘子不理解的问。胖子道:“你们念的书多,不懂,我读书少,凡事都必须用笔写下来,但是这样有个好处,比如说有几件事情,你可以一起做,你事先一理就能知道,可以节省不少时间。咱们不是只有两天了吗?还是得省点,对了,还有5吗?谁还有5?”我看了看这四点,这确实己经是包括量子力学到玄学到心理学到工程学四大学科都齐了,第五点一时半会儿还真想不出来。我们刚才的讨论,其实也只是讨论一和二,三和四简直就是不可能的嘛。节选自:云顶天宫(下) 第三十二章知识框架在数学问题中,有一些需要计算总数或种类的趣题,因其数量关系比较隐蔽,很难找到“正统”的方式解答,让人感到无从下手。对此,我们可以先初步估计其数目的大小。若数目不是太大,就按照一定的顺序,一一列举问题的可能情况;若数目过大,并且问题繁杂,我们就抓住对象的特征,选择恰当的标准,把问题分为不重复、不遗漏的有限种情形,通过一一列举或计数,最终达到解决目的。这就是枚举法,也叫做列举法或穷举法。重难点(1) 做到不重补漏,把复杂的问题简单化。(2) 按照一定的规律,特点去枚举。(3) 从思想上认识到枚举的重要性。例题精讲模块一、分类枚举数出来的种类【例 1】 用1至8这八个自然数中的四个组成四位数,从个位到千位的数字依次增大,且任意两个数字的差都不是1,这样的四位数共有 个。【巩固】 三张数字卡片0,2,4可以组成_个能被4整除的不同整数。【例 2】 从1、2、3、4、5、6这些数中,任取两个数,使其和不能被3整除,则有_种取法。【巩固】 从l9这9个数码中取出3个,使它们的和是3的倍数,则不同取法有_种。【例 3】 小明的两个口袋中各有6张卡片,每张卡片上分别写着1,2,3,6。从这两个口袋中各拿出一张卡片来计算上面所写两数的乘积,那么,其中能被6整除的不同乘积有_个。【巩固】 老师带着佳佳、芳芳和明明做计算练习.老师先分别给他们一个数,然后让他们每人取3张写有数的卡片.佳佳取的是3、6、7,芳芳取的是4、5、6,明明取的是4、5、8.这时老师让他们分别取自己卡片上的两个数相乘,再加上开始老师给他们的数.如果老师开始时给他们的数依次是234、235、236,而且他们计算都正确,那么可能算出_个不同的数. 【例 4】 如果三位数同时满足如下条件:的各位数字之和是7;还是三位数,且各位数字之和为5那么这样的三位数共有 个(简单分类枚举A B)分类标准的选取.【巩固】 把数1,2,3,4,5,6分为三组(不考虑组内数的顺序也不考虑组间的顺序),每组两个数,每组的数之和互不相等且都不等于6,共有_种分法(简单分类枚举A BC)分类标准?模块二、分类枚举分类【例 5】 甲、乙、丙三个工厂共订300份报纸,每个工厂至少订了99份,至多101份,问:一共有多少种不同的订法? 【巩固】 大林和小林共有小人书不超过9本,他们各自有小人书的数目有多少种可能的情况?【例 6】 从110中每次取两个不同的数相加,和大于10的共有多少种取法?(简单分类枚举A BC)【巩固】 从18中每次取两个不同的数相加,和大于10的共有多少种取法?【例 7】 四个学生每人做了一张贺年片,放在桌子上,然后每人去拿一张,但不能拿自己做的一张问:一共有多少种不同的方法? 【巩固】 一次,齐王与大将田忌赛马每人有四匹马,分为四等田忌知道齐王这次比赛马的出场顺序依次为一等,二等,三等,四等,而且还知道这八匹马跑的最快的是齐王的一等马,接着依次为自己的一等,齐王的二等,自己的二等,齐王的三等,自己的三等,齐王的四等,自己的四等田忌有_种方法安排自己的马的出场顺序,保证自己至少能赢两场比赛 【例 8】 把一元钱换成角币,有多少种换法?人民币角币的面值有五角、二角、一角三种 【巩固】 一把硬币全是2分和5分的,这把硬币一共有1元,问这里可能有多少种不同的情况? 【例 9】 用100元钱购买2元、4元或8元饭票若干张,没有剩钱,共有多少不同的买法? 【巩固】 一个文具店橡皮每块5角、圆珠笔每支1元、钢笔每支2元5角小明要在该店花5元5角购买两种文具,他有多少种不同的选择 【例 10】 用1元、5元、10元、50元、100元人民币各一张,2元、20元人民币各两张,在不找钱的情况下,最多可以支付 种不同的款额。【巩固】 给定三种重量的砝码(每种数量都有足够多个),将它们组合凑成有 种,不同的方法(每种砝码至少用一块。)课堂检测【随练1】 如下图,有8张卡片,上面分别写着自然数1至8。从中取出3张,要使这3张卡片上的数字之和为9。问有多少种不同的取法? 【随练2】 用40元钱购买单价分别为2元、5元和11元的三种练习本,每种至少买1本,而且钱刚好花完,则不同的购买方法_种。【随练3】 abcd代表一个四位数,其中a,b,c,d均为1,2,3,4中的某个数字,但彼此不同,例如2134。请写出所有满足关系ab,bc,cd的四位数abcd来。 复习总结用枚举法解题的最大的缺点是运算量比较大,解题效率不高,如果枚举范围太大,在时间上就难以承受。但枚举算法的思路简单,比赛时也容易想到,在竞赛中,时间是有限的,我们竞赛的最终目标就是求出问题解,因此,如果题目的规模不是很大,在规定的时间与空间限制内能够求出解,那么我们最好是采用枚举法,而不需太在意是否还有更快的算法,这样可以使你有更多的时间去解答其他难题。 选择分类标准是枚举法的难点,好的分类标准可以简化枚举,并不重不漏。 家庭作业 【作业1】 从1至8这8个自然数中,每次取出两个不同的数相加,要使它们的和大于11,共有多少种不同的取法? 【作业2】 节目期间,小明将6个彩灯排成一列,其中有2个红灯,4个绿灯,如果两个红灯不相邻,则不同的排法有_种(其中“红绿红绿绿绿”与“绿绿绿红绿红”类型算作一种)。【作业3】 将左下图中20张扑克牌分成10对,每对红心和黑桃各一张。问:你能分出几对这样的牌,两张牌上的数的乘积除以的余数是?(将A看成)【作业4】 用

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论