已阅读5页,还剩67页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
初高中数学衔接教材研究怎样学好高中数学 高中数学学习是中学阶段承前启后的关键时期,不少学生升入高中后,能否适应高中数学的学习,是摆在高中新生面前的一个亟待解决的问题,除了学习环境、教学内容和教学因素等外部因素外,同学们还应该转变观念、提高认识和改进学法。下面我们就来听听清华大学附属中小学网校的老师针对如何学好高中数学的一些建议。 1、认识高中数学的特点 高中数学是初中数学的提高和深化,初中数学在教材表达上采用形象通俗的语言,研究对象多是常量,侧重于定量计算和形象思维,而高中数学语言表达抽象,逻辑严密,思维严谨,知识连贯性和系统性强。 2、正确对待学习中遇到的新困难和新问题 在开始学习高中数学的过程中,肯定会遇到不少困难和问题,同学们要有克服困难的勇气和信心,胜不骄,败不馁,有一种“初生牛犊不怕虎”的精神,愈挫愈勇,千万不能让问题堆积,形成恶性循环,而是要在老师的引导下,寻求解决问题的办法,培养分析问题和解决问题的能力。 3、要提高自我调控的“适教”能力 一般来说,教师经过一段时间的教学实践后,因自身对教学过程的不同理解和知识结构、思维特点、个性倾向、职业经历等原因,在教学方式、方法、策略的采用上表现出一定的倾向性,形成自己独特的、一贯的教学风格或特点。作为一名学生,让老师去适应自己显然不现实,我们应该根据教师的特点,立足于自身的实际,优化学习策略,调控自己的学习行为,使自己的学法逐步适应老师的教法,从而使自己学得好、学得快。 4、要将“以老师为中心”转变为“以自己为主体,老师为主导”的学习模式 数学不是靠老师教会的,而是在老师引导下,靠自己主动思维活动去获取的,学习数学就是要积极主动地参与教学过程,并经常发现和提出问题,而不能跟着老师的惯性运转,被动地接受所学知识和方法。 5、要养成良好的个性品质 要树立正确的学习目标,培养浓厚的学习兴趣和顽强的学习毅力,要有足够的学习信心,实事求是的科学态度,以及独立思考、勇于探索的创新精神。 6、要养成良好的预习习惯,提高自学能力课前预习而“生疑”,“带疑”听课而“感疑”,通过老师的点拨、讲解而“悟疑”、“解疑”,从而提高课堂听课效果。预习也叫课前自学,预习的越充分,听课效果就越好;听课效果越好,就能更好地预习下节内容,从而形成良性循环。 7、要养成良好的审题习惯,提高阅读能力审题是解题的关键,数学题是由文字语言、符号语言和图形语言构成的,拿到题目要“宁停三分”,“不抢一秒”,要在已有知识和解题经验基础上,译字逐句仔细审题,细心推敲,切忌题意不清,仓促上阵,审数学题有时须对题意逐句“翻译”,隐含条件转化为明显条件;有时需联系题设与结论,前后呼应挖掘构建题设与目标的桥梁,寻找突破点,从而形成解题思路。 8、要养成良好的演算、验算习惯,提高运算能力学习数学离不开运算,初中老师往往一步一步在黑板上演算,因时间有限,运算量大,高中老师常把计算留给学生,这就要同学们多动脑,勤动手,不仅能笔算,而且也能口算和心算,对复杂运算,要有耐心,掌握算理,注重简便方法。 9、要养成良好的解题习惯,提高自己的思维能力数学是思维的体操,是一门逻辑性强、思维严谨的学科。而训练并规范解题习惯是提高用文字、符号和图形三种数学语言表达的有效途径,而数学语言又是发展思维能力的基础。因此要逐步夯实基础,提高自己的思维能力。 10、要养成解后反思的习惯,提高分析问题的能力解完题目之后,要养成不失时机地回顾下述问题:解题过程中是如何分析联想探索出解题途径的?使问题获得解决的关键是什么?在解决问题的过程中遇到了哪些困难?又是怎样克服的?这样,通过解题后的回顾与反思,就有利于发现解题的关键所在,并从中提炼出数学思想和方法,如果忽视了对它的挖掘,解题能力就得不到提高。因此,在解题后,要经常总结题目及解法的规律,只有勤反思,才能“站得高山,看得远,驾驭全局”,才能提高自己分析问题的能力。 11、要养成纠错订正的习惯,提高自我评判能力 要养成积极进取,不屈不挠,耐挫折,不自卑的心理品质,对做错的题要反复琢磨,寻找错因,进行更正,养成良好的习惯,不少问题就会茅塞顿开,从而提高自我评判能力。 12、要养成善于交流的习惯,提高表达能力在数学学习过程中,对一些典型问题,同学们应善于合作,各抒己见,互相讨论,取人之长,补己之短,也可主动与老师交流,说出自己的见解和看法,在老师的点拨中,他的思想方法会对你产生潜移默化的影响。因此,只有不断交流,才能相互促进、共同发展,提高表达能力。如果固步自封,就会钻牛角尖,浪费不必要的时间。 13、要养成勤学善思的习惯,提高创新能力“学而不思则罔,思而不学则贻”。在学习数学的过程中,要遵循认识规律,善于开动脑筋,积极主动去发现问题,进行独立思考,注重新旧知识的内在联系,把握概念的内涵和外延,做到一题多解,一题多变,不满足于现成的思路和结论,善于从多侧面、多方位思考问题,挖掘问题的实质,勇于发表自己的独特见解。因为只有思索才能生疑解疑,透彻明悟。一个人如果长期处于无问题状态,就说明他思考不够,学业也就提高不了。 14、要养成归纳总结的习惯,提高概括能力每学完一节一章后,要按知识的逻辑关系进行归纳总结,使所学知识系统化、条理化、专题化,这也是再认识的过程,对进一步深化知识积累资料,灵活应用知识,提高概括能力将起到很好的促进作用。 15、要养成做笔记的习惯,提高理解力为了加深对内容的理解和掌握,老师补充内容和方法很多,如果不做笔记,一旦遗忘,无从复习巩固,何况在做笔记和整理过程中,自己参与教学活动,加强了学习主动性和学习兴趣,从而提高了自己的理解力。 16、要养成写数学学习心得的习惯,提高探究能力写数学学习心得,就是记载参与数学活动的思考、认识和经验教训,领悟数学的思维结果。把所见、所思、所悟表达出来,能促使自己数学经验、数学意识的形成,以及对数学概念、知识结构、方法原理进行系统分类、概括、推广和延伸,从而使自己对数学的理解从低水平上升到高水平,提高自己的探究能力。 总之,同学们要养成良好的学习习惯,勤奋的学习态度,科学的学习方法,充分发挥自身的主体作用,不仅学会,而且会学,只有这样,才能取得事半功倍之效。 第一章 衔接教材研究一、初、高中数学知识存在以下“脱节”内容1立方和、立方差公式在初中已删去不讲,而高中的运算还在用2因式分解,初中一般只限于二次项且系数为“1”的分解,对系数不为“1”的涉及不多,而且对三次或高次多项式因式分解几乎不作要求,但高中教材许多化简求值都要用到,如解方程、不等式等3二次根式中对分子、分母有理化,初中不作要求,而分子、分母有理化是高中函数、不等式常用的解题技巧4初中教材对二次函数要求较低,学生处于了解水平,但二次函数却是高中贯穿始终的重要内容配方、作简图、求值域、解二次不等式、判断单调区间、求最大、最小值,研究闭区间上函数最值等等是高中数学必须掌握的基本题型与常用方法5二次函数、二次不等式与二次方程的联系,根与系数的关系(韦达定理)在初中不作要求,此类题目仅限于简单常规运算和难度不大的应用题型,而在高中二次函数、二次不等式与二次方程相互转化是重要内容,高考必考内容,而高中教材很少安排专门的章节6图像的对称、平移变换,初中只作简单介绍,而在高中讲授函数后,对其图像的上、下;左、右平移,两个函数关于原点,轴、直线的对称问题必须掌握7含有参数的函数、方程、不等式,初中不作要求,只作定量研究,而高中这部分内容视为重难点、高考必考方程、不等式、函数的综合考查常成为高考综合题8几何部分很多概念(如重心、垂心等)和定理(如平行线分线段比例定理,射影定理,相交弦定理等)初中生大都没有学习,而高中都要涉及二、数学思想与数学方法数学内容包包括数学知识、数学方法和数学思想三个部分数学方法通常指解决数学问题时采用的方式、途径或手段任何一个数学问题的解答离不开一定的数学方法数学思想方法是数学知识在更高层次上的抽象和概括,它蕴含于数学知识的发生、发展和应用过程之中数学思想方法是数学知识的灵魂和精髓,是知识转化为能力的桥梁数学思想方法一般划分为三个层次,即数学的一般方法、数学思维方法、数学思想方法数学的一般方法,是指在解决数学问题时所使用的常规方法中学阶段用到的数学方法可分两类通法与巧法通法是指规律性较强的通用方法如配方法、挽元法、待定系数法、分离系数法、代入法、消元法、数形结合法、参数法、判别式法、放缩法、数学归纳法、反证法、比较法、构造法、割补法,以及用其它知识来解决问题的三角法、解析法、几何法、代数法等通法是数学方法的基础巧法是指技巧性较强的方法,是对通法的发展和变式,是把握数学方法的难点如向量方法、错项相消(减)法、裂项法、拆添项法、特殊值法等数学思维方法,主要指逻辑学中的方法,如观察、分析、归纳、综合、试验、演绎、特殊化等方法它们不仅适用于数学内容,而且更具有一般性,在数学教学中有一定的作用,在高考中也是经常考查的方法数学思想方法是适用于中学数学全部内容的通法,主要包括函数与方程思想、数形结合思想、分类讨论思想、等价转化思想数学思想方法是高考考查的核心初、高中数学思想方法比较:1配方法在高中有着相当重要的地位与作用,初中虽也涉及,但还需使学生能熟练掌握配方法的基本过程2换元法也是最基本的数学方法之一,在数学解题中有着不可估量的作用,初中对该方法的训练已大大弱化,高中数学却经常在应用,可设计专题内容进行系统讲授分离系数法、待定系数法,作为基本的数学方法初中要求明显降低,高中教学可进行系统的讲授与训练3数形结合思想、分类讨论思想是数学重要的思想方法,仅靠新课讲授时的教学显然不够,在专门的课时下进行不断的渗透,让学生逐步理解并接受,从而能自觉应用于数学解题中4数学思想与数学方法,另外,像配方法、换元法、待定系数法初中教学大大弱化,不利于高中知识的讲授三、衔接教学的方式1分散式初中有些知识,与高中有联系但比较分散;对于这一部分,高中数学新授课,就可以从复习初中内容的基础上,引入新内容。高一数学的每一节内容,都是在初中基础上发展而来的,故在引入新知识、新概念时,注意旧知识的复习,用学生已熟悉的知识进行铺垫和引入2集中式初中有些知识,与高中知识联系密切,也比较集中;如:因式分解、绝对值和根式、函数、代数恒等式的证明、方程和不等式等,对于这一部分,最好在高中新授课前集中进行学习,比较好设计应立足于学生的认知基础,和对学生能力的要求。选择与高中知识联系较密切的初中知识,按照所选内容,内在的关联顺序,及遵循循序渐进的原则,使学生的思维层层展开,逐步深入;同时,合理引入一些新的内容四、认真分析教材,落实衔接内容1数与代数方面(1)初中新课标规定:有理数混合运算以三步为主;乘法公式只要求两个(即平方差、完全平方公式),没有立方和与立方差公式;多项式相乘仅指一次式相乘。以上会影响到高中函数、数列、二项式定理等相关内容的教学(2)初中课改后进一步减少了因式分解的教学内容,只要求提公因式法、公式法(直接用公式不超过二次),而十字相乘法、分组分解法在初中新课标中都不作要求,高中教学中要经常用到这两种方法,需补充(3)一元一(二)次方程中含字母系数的方程、三元一次方程组、可化为一元二次方程的分式方程、无理方程、二元二次方程组等内容初中新课标都不作要求,这给高中求轨迹方程与曲线交点等方面带来障碍(4)初中新课标对分母有理化不作要求,学生有关根式的运算(根号内含字母的)能力比较薄弱,如果不加强根式运算,以后高中求圆锥曲线标准方程就会受到影响(5)初中数学新课标中指出:借助数轴理解绝对值的意义,会求有理数的绝对值,但绝对值符号内不含字母因此高中的不等式、函数、方程等含参数问题的解答就会受到影响(6)关于配方法,初中新课标要求理解配方法,会用因式分解法、公式法、配方法解简单的数字系数的一元二次方程但新课标中没有要求用配方法求二次函数的顶点,只要求会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导)(7)一元二次方程根的判别式在初中新课标中不要求。今后高中在直线与圆锥曲线综合应用时常常要用到,在涉及到函数图像与x轴交点问题时也常用到,这无疑是一个障碍。(8)一元二次方程根与系数关系(韦达定理)初中新课标不要求,初中教材只是将此内容编成一个实践与探索的题目,对韦达定理没有加以具体证明与阐述,所以大部分学生对此知识及其应用不甚了知(9)换元法初中不作要求,在高中教学中应注意补充这种方法2空间与图形方面(1)初中新课标删除繁难的几何证明题,淡化几何证明技巧,减少定理数量,只要求用4条基本事实证明40条左右的命题这与高中数学教学中对学生推理论证能力的较高要求不相适应(2)平行线等分线段定理、平行线分线段成比例定理、截三角形两边或延长线的直线平行于第三边的判定定理、圆内接四边形的判定与性质(有关四点共圆的知识)等初中新课改都不作要求,这样高中立体几何、平面解析几何、解三角形的学习会受到影响(3)初中没有轨迹概念,高中解析几何会用到的(4)初中课标只要求通过实例,体会反证法的含义,要求不高(5)在初中新课标中,两圆连心线的性质,两圆公切线及其相关性质,圆的弦切角定理、相交弦定理、切割线定理,正多边形的有关计算,等分圆周都被删去了;相切在作图中的应用初中也不作要求这些会影响高中立体几何、平面解析几何的学习五、加强学法指导,掌握学习方法学习的知识,大多是本源性知识、派生性知识,因此初中学习基本采用“感性认识理性认识实践”的方法;而高中学习基本采用“已知理性认识新的理性认识实践”的方法1重视学生良好习惯培养。好的学习习惯有勤学好问习惯、上课专心听讲习惯、作笔记的习惯、及时复习的习惯、独立完成作业书写规范工整的习惯等只有有了良好的学习习惯,才能在教师的有效引导下度过这个衔接阶段 2教给基本方法怎样观察与思考、怎样理解与分析、怎样综合与应用,是高中教学的难点所在,掌握学习方法是攻破这个难点的措施之一如问题讨论法、自学指导法、类比推理法、假设法、实验辅助法、预习听课复习(练习)总结归纳的学习方法,将学与问、学与练、学与思、学与用有机结合起来3自学能力授人以“渔”,因材施“导”,努力教会学生自学,培养自学能力,是教之根本,而自学能力的提高,首先有赖于阅读理解能力的培养。高一学生阅读时,读不顺,读不细,读不实,读不准,所以老师千万别急,在这个衔接阶段,可以编出问题,引导阅读,如概念叙述与理解,定理、命题的方法与思路。让学生边阅读边回答,对概念要求会联系、会举例;定理要求会分析、会应用;解题要求尽量一题多解一章结束会用图表归纳结论和要点,弄清重点概念和定理、公式,明白要掌握哪些基础知识技能4把握好初、高中教法、学法上的不同 初中数学教学内容少,知识难度不大,教学要求较低,因而教学进度较慢,对于某些重点、难点,教师可以有充裕的时间反复讲解、多次演练,从而各个击破。并且同时,不可否认有些初中教师为了应付中考,让学生通过机械模仿式的重复练习以达到熟能生巧来提高成绩,结果造成“重知识,轻能力”、“重局部,轻整体”、“重试卷(复习资料),轻书本”的不良倾向。初中新课标的实施的确大大缓解这种严重束缚了学生思维影响和学生发现意识的形成的传统教学方式,但只要考试评价体制不作大的改变,对普通中学这来说对这种情况还是普遍存在着的而进入高中以后,教学教材内涵丰富,教学要求高,教学进度快,知识信息广泛,题目难度加深,知识的重点和难点也不可能象初中那样通过反复强调来排难释疑。新课标下,高中教学往往通过设导、设问、设陷、设变,启发引导,开拓思路,然后由学生自己思考、去解答,比较注意知识的发生过程,倾重对学生思想方法的渗透和思维品质的培养,相对比较重视学生自己去学习这使得刚入高中的学生不容易适应这种教学方法。听课时就存在思维障碍,不容易跟上教师的思维,从而产生学习障碍,影响数学的学习.因而高中数学教师在教学过程中要注意对学生学法的指导良好学习习惯是学好高中数学的重要因素。它包括:制定计划、课前自习、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习这几个方面。改进学生的学习方法,可以这样进行:引导学生养成认真制定计划的习惯,合理安排时间,从盲目的学习中解放出来;引导学生养成课前预习的习惯。可布置一些思考题和预习作业,保证听课时有针对性。还要引导学生学会听课,要求做到“心到”,即注意力高度集中;“眼到”,即仔细看清老师每一步板演;“手到”,即适当做好笔记;“口到”,即随时回答老师的提问,以提高听课效率。引导学生养成及时复习的习惯,下课后要反复阅读书本,回顾堂上老师所讲内容,查阅有关资料,或向教师同学请教,以强化对基本概念、知识体系的理解和记忆引导学生养成独立作业的习惯,要独立地分析问题,解决问题。切忌有点小问题,或习题不会做,就不加思索地请教老师同学引导学生养成系统复习小结的习惯,将所学新知识融入有关的体系和网络中,以保持知识的完整性第二章 衔接教材目 录1.1 数与式的运算1.1.1绝对值1.1.2. 乘法公式1.1.3二次根式1.1.分式12 分解因式2.1 一元二次方程2.1.1根的判别式2.1.2 根与系数的关系(韦达定理)22 二次函数2.2.1 二次函数yax2bxc的图像和性质2.2.2 二次函数的三种表示方式2.2.3 二次函数的简单应用2.3 方程与不等式2.3.1 二元二次方程组解法2.3.2 一元二次不等式解法31 相似形3.1.1平行线分线段成比例定理3.1.2相似形3.2 三角形3.2.1 三角形的“四心”3.2.2 几种特殊的三角形33圆3.3.1 直线与圆,圆与圆的位置关系3.3.2 点的轨迹1.1 数与式的运算1.1绝对值绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零即绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离 两个数的差的绝对值的几何意义:表示在数轴上,数和数之间的距离例1 解不等式:4解法一:由,得;由,得;若,不等式可变为,即4,解得x0,又x1,x0;若,不等式可变为,即14,不存在满足条件的x;若,不等式可变为,即4, 解得x4又x3,x4综上所述,原不等式的解为 x0,或x4解法二:如图111,表示x轴上坐标为x的点P到坐标为1的点A之间的距离|PA|,即|PA|x1|;|x3|表示x轴上点P到坐标为2的点B之间的距离|PB|,即|PB|x3|所以,不等式4的几何意义即为|PA|PB|4由|AB|2,可知点P 在点C(坐标为0)的左侧、或点P在点D(坐标为4)的右侧x0,或x4点评:本题考查了分类讨论思想与数形结合思想练 习1填空:(1)若,则x=_;若,则x=_.(2)如果,且,则b_;若,则c_.2选择题:下列叙述正确的是(A)若,则 (B)若,则 (C)若,则 (D)若,则3化简:|x5|2x13|(x5)1.1.2. 乘法公式我们在初中已经学习过了下列一些乘法公式:(1)平方差公式 ; (2)完全平方公式我们还可以通过证明得到下列一些乘法公式:(1)立方和公式;(2)立方差公式;(3)三数和平方公式 ;(4)两数和立方公式;(5)两数差立方公式对上面列出的五个公式,有兴趣的同学可以自己去证明例1 计算:解法一:原式=解法二:原式=例2 已知,求的值解: 练 习1填空: (1)( ); (2) ; (3 ) 2选择题:(1)若是一个完全平方式,则等于(A) (B) (C) (D)(2)不论,为何实数,的值 (A)总是正数 (B)总是负数 (C)可以是零 (D)可以是正数也可以是负数 1.1.3二次根式 一般地,形如的代数式叫做二次根式根号下含有字母、且不能够开得尽方的式子称为无理式. 例如 ,等是无理式,而,等是有理式1分母(子)有理化把分母(子)中的根号化去,叫做分母(子)有理化为了进行分母(子)有理化,需要引入有理化因式的概念两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式,例如与,与,与,与,等等 一般地,与,与,与互为有理化因式分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化则是分母和分子都乘以分母的有理化因式,化去分子中的根号的过程在二次根式的化简与运算过程中,二次根式的乘法可参照多项式乘法进行,运算中要运用公式;而对于二次根式的除法,通常先写成分式的形式,然后通过分母有理化进行运算;二次根式的加减法与多项式的加减法类似,应在化简的基础上去括号与合并同类二次根式2二次根式的意义例1将下列式子化为最简二次根式:(1); (2); (3)解: (1); (2); (3)例2计算:解法一: 解法二: 例3 试比较下列各组数的大小:(1)和; (2)和.解: (1), ,又, (2) 又 42, 42, .例4化简:解: 例 5 化简:(1); (2) 解:(1)原式 (2)原式=, 所以,原式例 6 已知,求的值 解:,练 习1填空:(1)_ _;(2)若,则的取值范围是_ _;(3)_ _;(4)若,则_ _2选择题:等式成立的条件是 (A) (B) (C) (D)3若,求的值4比较大小:2 (填“”,或“”)1.1.分式 1分式的意义形如的式子,若B中含有字母,且,则称为分式当M0时,分式具有下列性质:;上述性质被称为分式的基本性质 2繁分式 像,这样,分子或分母中又含有分式的分式叫做繁分式例1若,求常数的值解: , 解得 例2(1)试证:(其中n是正整数); (2)计算:; (3)证明:对任意大于1的正整数n, 有(1)证明:,(其中n是正整数)成立(2)解:由(1)可知 (3)证明:, 又n2,且n是正整数,一定为正数,例3设,且e1,2c25ac2a20,求e的值解:在2c25ac2a20两边同除以a2,得 2e25e20, (2e1)(e2)0, e1,舍去;或e2e2练 习1填空题:对任意的正整数n, ();2选择题:若,则 ( )(A) (B) (C) (D)3正数满足,求的值4计算习题11A 组1解不等式: (1) ; (2) ; (3) 已知,求的值3填空:(1)_;(2)若,则的取值范围是_;(3)_ B 组1填空: (1),则_ _;(2)若,则_ _;2已知:,求的值C 组1选择题:(1)若,则 ( ) (A) (B) (C) (D)(2)计算等于 ( )(A) (B) (C) (D)2解方程3计算:4试证:对任意的正整数n,有12 分解因式因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法1十字相乘法例1 分解因式: (1) x23x2; (2)x24x12; (3); (4) 解:(1)如图121,将二次项x2分解成图中的两个x的积,再将常数项2分解成1与2的乘积,而图中的对角线上的两个数乘积的和为3x,就是x23x2中的一次项,所以,有x23x2(x1)(x2)aybyxx图1242611图1231211图12212xx图121 说明:今后在分解与本例类似的二次三项式时,可以直接将图121中的两个x用1来表示(如图122所示)11xy图125(2)由图123,得x24x12(x2)(x6)(3)由图124,得 (4)xy(xy)1(x1) (y+1) (如图125所示)2提取公因式法与分组分解法例2 分解因式: (1); (2)解:(1)=或 (2)= =或 = =3关于x的二次三项式ax2+bx+c(a0)的因式分解若关于x的方程的两个实数根是、,则二次三项式就可分解为.例3把下列关于x的二次多项式分解因式:(1); (2)解: (1)令=0,则解得, =(2)令=0,则解得, =练 习1选择题:多项式的一个因式为(A) (B) (C) (D)2分解因式:(1)x26x8; (2)8a3b3; (3)x22x1; (4)习题121分解因式: (1) ; (2); (3); (4)2在实数范围内因式分解:(1) ; (2); (3); (4)3三边,满足,试判定的形状4分解因式:x2x(a2a)参考答案练习1.21 B 2(1)(x2)(x4) (2)(3) (4)习题121(1) (2) (3) (4) 2(1);(2);(3); (4)3等边三角形4 2.1 一元二次方程2.1.1根的判别式我们知道,对于一元二次方程ax2bxc0(a0),用配方法可以将其变形为 因为a0,所以,4a20于是(1)当b24ac0时,方程的右端是一个正数,因此,原方程有两个不相等的实数根 x1,2;(2)当b24ac0时,方程的右端为零,因此,原方程有两个等的实数根 x1x2;(3)当b24ac0时,方程的右端是一个负数,而方程的左边一定大于或等于零,因此,原方程没有实数根由此可知,一元二次方程ax2bxc0(a0)的根的情况可以由b24ac来判定,我们把b24ac叫做一元二次方程ax2bxc0(a0)的根的判别式,通常用符号“”来表示综上所述,对于一元二次方程ax2bxc0(a0),有当0时,方程有两个不相等的实数根x1,2;当0时,方程有两个相等的实数根 x1x2;当0时,方程没有实数根例1 判定下列关于x的方程的根的情况(其中a为常数),如果方程有实数根,写出方程的实数根(1)x23x30; (2)x2ax10; (3) x2ax(a1)0; (4)x22xa0解:(1)3241330,方程没有实数根(2)该方程的根的判别式a241(1)a240,所以方程一定有两个不等的实数根, (3)由于该方程的根的判别式为a241(a1)a24a4(a2)2,所以 当a2时,0,所以方程有两个相等的实数根: x1x21; 当a2时,0, 所以方程有两个不相等的实数根: x11,x2a1(3)由于该方程的根的判别式为2241a44a4(1a),所以当0,即4(1a) 0,即a1时,方程有两个不相等的实数根 , ;当0,即a1时,方程有两个相等的实数根:x1x21;当0,即a1时,方程没有实数根点评:在第3,4小题中,方程的根的判别式的符号随着a的取值的变化而变化,于是,在解题过程中,需要对a的取值情况进行讨论,这一方法叫做分类讨论分类讨论这一思想方法是高中数学中一个非常重要的方法,在今后的解题中会经常地运用这一方法来解决问题2.1.2 根与系数的关系(韦达定理)若一元二次方程ax2bxc0(a0)有两个实数根,则有 ; 所以,一元二次方程的根与系数之间存在下列关系即韦达定理: 如果ax2bxc0(a0)的两根分别是x1,x2,那么x1x2,x1x2特别地,对于二次项系数为1的一元二次方程x2pxq0,若x1,x2是其两根,由韦达定理可知 x1x2p,x1x2q,即p(x1x2),qx1x2,所以,方程x2pxq0可化为 x2(x1x2)xx1x20,由于x1,x2是一元二次方程x2pxq0的两根,所以,x1,x2也是一元二次方程x2(x1x2)xx1x20因此有以两个数x1,x2为根的一元二次方程(二次项系数为1)是x2(x1x2)xx1x20例2 已知方程的一个根是2,求它的另一个根及k的值分析:由于已知了方程的一个根,可以直接将这一根代入,求出k的值,再由方程解出另一个根但由于我们学习了韦达定理,又可以利用韦达定理来解题,即由于已知了方程的一个根及方程的二次项系数和常数项,于是可以利用两根之积求出方程的另一个根,再由两根之和求出k的值解法一:2是方程的一个根,522k260,k7所以,方程就为5x27x60,解得x12,x2所以,方程的另一个根为,k的值为7解法二:设方程的另一个根为x1,则 2x1,x1由 ()2,得 k7所以,方程的另一个根为,k的值为7例3 已知关于x的方程x22(m2)xm240有两个实数根,并且这两个实数根的平方和比两个根的积大21,求m的值分析:本题可以利用韦达定理,由实数根的平方和比两个根的积大21得到关于m的方程,从而解得m的值但在解题中需要特别注意的是,由于所给的方程有两个实数根,因此,其根的判别式应大于零解:设x1,x2是方程的两根,由韦达定理,得 x1x22(m2),x1x2m24 x12x22x1x221,(x1x2)23 x1x221,即 2(m2)23(m24)21,化简,得 m216m170, 解得 m1,或m17当m1时,方程为x26x50,0,满足题意;当m17时,方程为x230x2930,302412930,不合题意,舍去综上,m17点评:在本题的解题过程中,也可以先研究满足方程有两个实数根所对应的m的范围,然后再由“两个实数根的平方和比两个根的积大21”求出m的值,取满足条件的m的值即可在今后的解题过程中,如果仅仅由韦达定理解题时,还要考虑到根的判别式是否大于或大于零因为,韦达定理成立的前提是一元二次方程有实数根本题考查了了配方法、待定系数法及分类讨论等数学思想方法例4 已知两个数的和为4,积为12,求这两个数分析:我们可以设出这两个数分别为x,y,利用二元方程求解出这两个数也可以利用韦达定理转化出一元二次方程来求解解法一:设这两个数分别是x,y,则 xy4, xy12 由,得 y4x,代入,得x(4x)12,即 x24x120,x12,x26 或因此,这两个数是2和6解法二:由韦达定理可知,这两个数是方程x24x120的两个根 解这个方程,得x12,x26所以,这两个数是2和6点评:从上面的两种解法我们不难发现,解法二(直接利用韦达定理来解题)要比解法一简捷例5 若x1和x2分别是一元二次方程2x25x30的两根(1)求| x1x2|的值;(2)求的值;(3)x13x23解:x1和x2分别是一元二次方程2x25x30的两根, ,(1)| x1x2|2x12+ x222 x1x2(x1x2)24 x1x26, | x1x2|(2)(3)x13x23(x1x2)( x12x1x2x22)(x1x2) ( x1x2) 23x1x2 ()()23()点评:一元二次方程的两根之差的绝对值是一个重要的量,今后我们经常会遇到求这一个量的问题,为了解题简便,我们可以探讨出其一般规律:设x1和x2分别是一元二次方程ax2bxc0(a0),则,| x1x2|于是有下面的结论:若x1和x2分别是一元二次方程ax2bxc0(a0),则| x1x2|(其中b24ac)今后,在求一元二次方程的两根之差的绝对值时,可以直接利用上面的结论例6 若关于x的一元二次方程x2xa40的一根大于零、另一根小于零,求实数a的取值范围解:设x1,x2是方程的两根,则x1x2a40, 且(1)24(a4)0 由得 a4,由得 aa的取值范围是a4练 习1选择题:(1)方程的根的情况是(A)有一个实数根 (B)有两个不相等的实数根(C)有两个相等的实数根 (D)没有实数根(2)若关于x的方程mx2 (2m1)xm0有两个不相等的实数根,则实数m的取值范围是 (A)m(B)m (C)m,且m0 (D)m,且m0 2填空:(1)若方程x23x10的两根分别是x1和x2,则 (2)方程mx2x2m0(m0)的根的情况是 (3)以3和1为根的一元二次方程是 3已知,当k取何值时,方程kx2axb0有两个不相等的实数根?4已知方程x23x10的两根为x1和x2,求(x13)( x23)的值习题2.1A 组1选择题:(1)已知关于x的方程x2kx20的一个根是1,则它的另一个根是( ) (A)3 (B)3 (C)2 (D)2(2)下列四个说法: 方程x22x70的两根之和为2,两根之积为7;方程x22x70的两根之和为2,两根之积为7;方程3 x270的两根之和为0,两根之积为;方程3 x22x0的两根之和为2,两根之积为0其中正确说法的个数是 ( ) (A)1个 (B)2个 (C)3个 (D)4个(3)关于x的一元二次方程ax25xa2a0的一个根是0,则a的值是( )(A)0 (B)1 (C)1 (D)0,或12填空:(1)方程kx24x10的两根之和为2,则k (2)方程2x2x40的两根为,则22 (3)已知关于x的方程x2ax3a0的一个根是2,则它的另一个根是 (4)方程2x22x10的两根为x1和x2,则| x1x2| 3试判定当m取何值时,关于x的一元二次方程m2x2(2m1) x10有两个不相等的实数根?有两个相等的实数根?没有实数根?4求一个一元二次方程,使它的两根分别是方程x27x10各根的相反数B 组1选择题:若关于x的方程x2(k21) xk10的两根互为相反数,则k的值为 (A)1,或1 (B)1 (C)1 (D)02填空:(1)若m,n是方程x22005x10的两个实数根,则m2nmn2mn的值等于 (2)如果a,b是方程x2x10的两个实数根,那么代数式a3a2bab2b3的值是 3已知关于x的方程x2kx20(1)求证:方程有两个不相等的实数根;(2)设方程的两根为x1和x2,如果2(x1x2)x1x2,求实数k的取值范围4一元二次方程ax2bxc0(a0)的两根为x1和x2求:(1)| x1x2|和;(2)x13x235关于x的方程x24xm0的两根为x1,x2满足| x1x2|2,求实数m的值C 组1选择题:(1)已知一个直角三角形的两条直角边长恰好是方程2x28x70的两根,则这个直角三角形的斜边长等于 (A) (B)3 (C)6 (D)9(2)若x1,x2是方程2x24x10的两个根,则的值为 ( ) (A)6 (B)4 (C)3 (D)(3)如果关于x的方程x22(1m)xm20有两实数根,则的取值范围为 ( ) (A) (B) (C)1 (D)1 (4)已知a,b,c是ABC的三边长,那么方程cx2(ab)x0的根的情况是 ( ) (A)没有实数根 (B)有两个不相等的实数根(C)有两个相等的实数根
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- LS/T 1105-2024全谷物分类与标示要求
- 2025-2030年中国空调行业并购重组扩张战略制定与实施研究报告
- 2025-2030年中国智能监控系列芯片行业资本规划与股权融资战略制定与实施研究报告
- 2025-2030年中国晶圆制造行业开拓第二增长曲线战略制定与实施研究报告
- 2025-2030年中国光纤激光器行业并购重组扩张战略制定与实施研究报告
- 2025-2030年中国地理信息行业商业模式创新战略制定与实施研究报告
- 新形势下虚拟养老院行业可持续发展战略制定与实施研究报告
- 2025-2030年中国团餐行业商业模式创新战略制定与实施研究报告
- 建设项目环境影响评价技术咨询合同
- 自动打铃控制器-PLC控制系统课程设计
- QCT1067.5-2023汽车电线束和电器设备用连接器第5部分:设备连接器(插座)的型式和尺寸
- (完整版)仪表选型
- T-CCAA 39-2022碳管理体系 要求
- 成人雾化吸入护理团体标准解读
- 油气回收相关理论知识考试试题及答案
- 2024-2030年中国气枪行业市场深度分析及发展前景预测报告
- 数字化技术在促进幼儿语言发展中的应用
- 江西省上饶市2023-2024学年高一上学期期末教学质量测试物理试题(解析版)
- 学生(幼儿)上学放学交通方式情况登记表
- 提高感染性休克集束化治疗达标率
- 电动自行车换电柜规划方案
评论
0/150
提交评论