正弦定理的证明.doc_第1页
正弦定理的证明.doc_第2页
正弦定理的证明.doc_第3页
正弦定理的证明.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

正弦定理的证明(方法一)可分为锐角三角形和钝角三角形两种情况:当ABC是锐角三角形时,设边AB上的高是CD,根据任意角三角函数的定义,有CD=,则 同理可得 从而 思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。(方法二)利用向量证明如图,在ABC中,过点作一个单位向量,使。当为钝角或直角时,同理可证上述结论。从上面的研探过程,可得以下定理正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即理解定理(1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k使,;(2)等价于,下面还介绍几种证明的方法,供感兴趣同学探索。(方法三)利用复数证明如图,如图2,建立平面直角坐标系在复平面内,过点作的平行线,过点作的平行线,交于点根据复数相等的定义,实部等于实部,虚部等于虚部可以得出(方法四)利用ABC的外接圆证明如图,是ABC的外接圆,设半径为,分别连结、,过点作垂足为。证明:(方法五)利用ABC的外接圆证明如图,是ABC的外接圆,设半径为,连结并延长,交 于点,连结。证明:(方法六)利用ABC的高线证明如图,在ABC中,过点作,垂足为证明:(方法七)利用两角和的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论