




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
泉州七中数学组 王剑峰参数方程和极坐标系一、 知识要点(一)曲线的参数方程的定义:在取定的坐标系中,如果曲线上任意一点的坐标x、y都是某个变数t的函数,即并且对于t每一个允许值,由方程组所确定的点M(x,y)都在这条曲线上,那么方程组就叫做这条曲线的参数方程,联系x、y之间关系的变数叫做参变数,简称参数(二)常见曲线的参数方程如下:1过定点(x0,y0),倾角为的直线:(t为参数)其中参数t是以定点P(x0,y0)为起点,对应于t点M(x,y)为终点的有向线段PM的数量,又称为点P与点M间的有向距离根据t的几何意义,有以下结论设A、B是直线上任意两点,它们对应的参数分别为tA和tB,则线段AB的中点所对应的参数值等于2中心在(x0,y0),半径等于r的圆:(为参数)3中心在原点,焦点在x轴(或y轴)上的椭圆:(为参数)(或)中心在点(x0,y0)焦点在平行于x轴的直线上的椭圆的参数方程4中心在原点,焦点在x轴(或y轴)上的双曲线:(为参数)(或)5顶点在原点,焦点在x轴正半轴上的抛物线:(t为参数,p0)直线的参数方程和参数的几何意义过定点P(x0,y0),倾斜角为的直线的参数方程是(t为参数)J3.2极坐标系1、定义:在平面内取一个定点O,叫做极点,引一条射线Ox,叫做极轴,再选一个长度单位和角度的正方向(通常取逆时针方向)。对于平面内的任意一点M,用表示线段OM的长度,表示从Ox到OM的角,叫做点M的极径,叫做点M的极角,有序数对(, )就叫做点M的极坐标。这样建立的坐标系叫做极坐标系。2、极坐标有四个要素:极点;极轴;长度单位;角度单位及它的方向极坐标与直角坐标都是一对有序实数确定平面上一个点,在极坐标系下,一对有序实数、对应惟一点P(,),但平面内任一个点P的极坐标不惟一一个点可以有无数个坐标,这些坐标又有规律可循的,P(,)(极点除外)的全部坐标为(,)或(,),(Z)极点的极径为0,而极角任意取若对、的取值范围加以限制则除极点外,平面上点的极坐标就惟一了,如限定0,0或0,则下列极坐标方程中,表示直线的是( )。 (A)= (B)cos= (0) (C)tg=1 (D)sin=1(0)5. 若点A(4, )与B关于直线=对称,在0, 条件下,B的极坐标是 。6. 直线cos()=1与极轴所成的角是 。7. 直线cos()=1与直线sin()=1的位置关系是 。8. 直线y=kx1 (k0且k)与曲线2sinsin20的公共点的个数是( )。 (A)0 (B)1 (C)2 (D)3例8.讨论下列问题;1. 圆的半径是1,圆心的极坐标是(1, 0),则这个圆的极坐标方程是( )。 (A)cos (B)sin (C)2cos (D)2sin2. 极坐标方程分别是cos和sin的两个圆的圆心距是( )。 (A)2 (B) (C)1 (D)3. 在极坐标系中和圆=4sin相切的一条直线方程是( ) (A)sin=2 (B)cos=2 (C)sin=4 (D)cos=44圆DcosEsin与极轴相切的充分必要条件是( ) (A)DE0 (B)D2E20 (C)D0,E0 (D)D0,E05圆2sin2cos的圆心的极坐标为 。6. 若圆的极坐标方程为=6cos,则这个圆的面积是 。7. 若圆的极坐标方程为=4sin,则这个圆的直角坐标方程为 。8. 设有半径为4的圆,它在极坐标系内的圆心的极坐标为(4, 0),则这个圆的极坐标方程为 。例9.当a、b、c满足什么条件时,直线与圆相切?例10.试把极坐标方程 化为直角坐标方程,并就m值的变化讨论曲线的形状。例11.过抛物线y2=2px的焦点F且倾角为的弦长|AB|,并证明:为常数学。例12.设椭圆左、右焦点分别为F1、F2,左、右端点分别为A、A,过F1作一条长度等于椭圆短轴长的弦MN,设MN的倾角为.(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 静脉输液法的操作
- 洗鞋机创业计划书
- 太原科技大学《英语视听(V)》2023-2024学年第二学期期末试卷
- 湖南医药学院《数字信号处理专用器件》2023-2024学年第二学期期末试卷
- 四川卫生康复职业学院《医学免疫学技术》2023-2024学年第二学期期末试卷
- 江汉大学《旋律写作基础(1)》2023-2024学年第二学期期末试卷
- 山东胜利职业学院《园艺植物栽培学1》2023-2024学年第一学期期末试卷
- 信阳航空职业学院《本科生科研训练》2023-2024学年第二学期期末试卷
- 中央民族大学《建筑材料》2023-2024学年第二学期期末试卷
- 2025合同签订即刻生效违规违约将面临重罚
- 高频变压器外观检验标准课件
- 火灾调查 学习指南
- 辞职报告辞职信
- 2021年新湘教版九年级数学中考总复习教案
- EGS002:EG8010+IR2110m正弦波逆变器AD16电路图印制板图
- 试析水稳填充大粒径碎石基层的全过程施工工艺
- 广东省行政执法资格考试题库(共80页)
- 英语科技论文写作ppt课件(PPT 65页)
- 现代汉语_短语PPT课件
- 1-二乙基氨基-4-氨基戊烷(2-氨基-5-二乙基氨基戊烷)的理化性质及危险特性表
- 道路堆场施工方案
评论
0/150
提交评论