




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
(网络查询关键词)Preflight and Vicarious Calibration of ArtemisARTEMIS Hyperspectral SensorAchieving Multipurpose Space Imaging with the ARTEMIS Reconfigurable Payload ProcessorThe ARTEMIS, a hyperspectral imaging sensor from Raytheon, is being tasked for the Air Force Space Commands tactical military role, which is the first of its kind.Raytheon ARTEMIS Hyperspectral Imaging Sensor for Tactical Military RoleIs there a best hyperspectral detection algorithm?(SPIE)Infrared Technology and Applications XXXVI (Proceedings Volume)IEEE ARTEMIS Hyperspectral SensorHyperspectral Sensor ARTEMISARTEMIS Hyperspectral PayloadTacSat 3 ARTEMISTACSAT 3- Information | Home| Passes (visible)| Passes (all)| Orbit| Identification USSPACECOM Catalog No.:35001International Designation Code:2009-028-A Satellite Details Orbit: 416 x 446 km, 40.5Country/Org. of Origin: USAIntrinsic brightness (Mag): 5.2 (at 1000km distance, 50% illuminated)Maximum brightness (Mag):1.4 (at perigee, 100% illuminated)Launch Date (UTC): May 18, 2009Sensor complement: (ARTEMIS, ODTML, SAE) Building on the experiences with TacSat-1 and -2, TacSat-3 is the first spacecraft of the series to have gone through a formal payload selection process with AFSPC (Air Force Space Command) and Coordinating Commands (COCOMs) and Services. ARTEMIS (Advanced Responsive Tactically Effective Military Imaging Spectrometer): ARTEMIS is a hyperspectral imager (HSI), funded by AFRL with additional funding by the US Army, designed and developed at Raytheon Space and Airborne Systems of El Segundo, CA, using COTS components extensively (ARTEMIS contract award in 2005). There is also a collaboration on the imaging spectrometer from NASA/JPL. The main objectives are: To demonstrate tactically significant hyperspectral imagery collection and processing sufficient to meet militarily relevant detection thresholds For a single-pass opportunity, the time period from a specified target collect to delivery of a processed product to the warfighter level must occur within 10 minutes (threshold: 30 min). The instrument consists of a telescope, an imaging spectrometer, a high resolution imager and a real-time processor referred to as HSIP (Hyperspectral Imaging Processor). ARTEMIS provides HSI observations in the visible and SWIR (Short Wave Infrared) region as well as panchromatic data. The spectral range coverage is from 0.4 -2.5 m. The telescope is a standard Ritchey-Chrtien form and is telecentric as is required to meet the spectral and spatial uniformity goals of the imaging spectrometer (heritage of TacSat-2). Additionally the secondary mirror has a built-in focus mechanism for on-orbit optimization. 12) 13) 14) 15) 16) Figure 6: Illustration of the ARTEMIS telescope (image credit: AFRL) The imaging spectrometer is of the basic Offner form consisting of two powered reflecting surfaces comprising the primary and tertiary elements. The secondary mirror is replaced by a curved grating for dispersion and is the limiting stop of the system. This form has the merit of being simple, compact, and both spatially and spectrally uniform. Spatial and spectral uniformity is critical to the operational performance of imaging spectrometers as it enables robust exploitation of data products. Spectral sampling is at 5 nm intervals. Additionally the design has 50 kbit per node per day - 0.1 Joule per bit transmitted. The ODTML network system consists of the following elements: 1) “Smart sensor nodes,” each containing an RF terminal, which collect the sensor data and communicate with the satellite payload. These smart sensor nodes are mounted on the sensor platforms, e.g., free-floating buoys or UGS (Unattended Ground Sensors). 2) Spacecraft Communications Payload (SCP), a microsatellite-mounted payload serving as a “router in the sky.” 3) Portable ground stations, acting as gateways to transfer the sensor data from the RF link to the Internet. 4) The Internet, as the communication conduit between the users and the ocean and ground-based observing platforms. Figure 11: Overview of the ODTML system elements (image credit: NRL) Figure 12: Conceptual overview of ODTML elements (image credit: Praxis Inc.) The ODTML demonstration will collect data from sea-based buoys and then will transmit the information back to a ground station. SAE (Space Avionics Experiment): The collection of concepts developed by AFRL to realize PnP (Plug-and-Play) space systems is collectively termed SPA (Space Plug-and-Play Avionics). These concepts include self-forming networks, machine-negotiated interfaces, encapsulation of complexity, and test bypass. The objective is to validate plug-n-play avionics capability, which involves the use of reprogrammable components to integrate the SPA experiment and the spacecraft structure. 23) 24) 25) 26) 1) Encapsulation: The most fundamental concept in the SPA paradigm is that of encapsulationhiding complexity within modular building blocks in order to simplify design. In SPA, this concept manifests itself both in the design of hardware and software. In hardware, the complex inner workings of the device are hidden from the rest of the system. Only single-point electrical connections consisting of data, power, and time synchronization are used to connect the device to the SPA network. Software encapsulation occurs at many levels, but the greatest example is in the use of XML-based or xTEDs (eXtended Transducer Electronic DataSheets) to precisely define the interfaces between components and even “pieces of software.” The goal of this architecture is the achievement of “pure” or “glueless” hardware and software modularity. “Gluelessness” is a very constrained form of modularity that allows rapid integration to occur. Instead of requiring custom electronics or software (the glue) to interface one modular block with another, each block contains everything it needs to maintain compatibility with other blocks in the system. 2) Self-forming networks: The second important SPA concept is that of self-forming networks. In SPA, every device is considered an endpoint on the network, including both traditional bus components, such as reaction wheels or torque rods, and payload components, such as imaging devices. In fact, even structures are endpoints and can be treated in the same manner as other SPA devices on the network. For example, a spacecraft structural panel may contain its own harnessing and internal routers and hubs - essentially an entire SPA sub-network in itself, but the panel is also an endpoint and can be treated as such in the larger SPA network that is the PnP spacecraft. The result is a collection of endpoints separated by hubs or routers and arranged in any order or configuration. The SPA network is created dynamically as devices are introduced. 3) Machine-negotiated interfaces: Glueless modularity and self-describing networks are achieved in the SPA architecture through the use of the third SPA concept-machine-negotiated interfaces. SPA interfaces are defined by components in their resident xTEDs and managed by the SDM (Satellite Data Model). The xTEDs contains descriptions of all commands accepted, variables produced, and data messages
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 重庆三峡职业学院《大学职业生涯规划》2023-2024学年第一学期期末试卷
- 山东省临沂市兰陵县市级名校2024-2025学年中考适应性考试化学试题含解析
- 益阳职业技术学院《人类的双面书架高黎贡山》2023-2024学年第二学期期末试卷
- 洛阳市重点中学2025年初三年级调研测试英语试题试卷含答案
- 宁夏大学新华学院《微积分EI》2023-2024学年第一学期期末试卷
- 曲靖市沾益区大坡乡重点达标名校2025届初三下期中质量检测试题生物试题含解析
- 内蒙古美术职业学院《大学体育-剑术》2023-2024学年第一学期期末试卷
- 浙江省协作体2025年高三年级下学期第一次统练英语试题含解析
- 枣强中学高一上学期第三次月考英语试题
- 教育知识与能力
- 贵州国企招聘2025贵州路桥集团有限公司招聘35人笔试参考题库附带答案详解
- DB32T 5082-2025建筑工程消防施工质量验收标准
- 2025年北京龙双利达知识产权代理有限公司招聘笔试参考题库含答案解析
- 门头广告合同协议
- 2024-2025学年人教新版七年级下册数学期中复习试卷(含详解)
- 2025年中国电船制造行业市场全景监测及投资前景展望报告
- 2025河北保定钞票纸业有限公司人员招聘29人笔试参考题库附带答案详解
- 初三历史教学经验交流会发言稿
- 广东省阳江市阳东正雅学校等多校2024-2025学年高二下学期3月联考思想政治试题(含答案)
- 企业事故隐患内部报告奖励制度
- 施工安全的教育培训记录表
评论
0/150
提交评论