人教版六年级下册鸽巢问题单元教材分析——韩雪峰.doc_第1页
人教版六年级下册鸽巢问题单元教材分析——韩雪峰.doc_第2页
人教版六年级下册鸽巢问题单元教材分析——韩雪峰.doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

鸽巢问题单元教材分析一、单元总目标1、经历从实际生活中发现问题、提出问题、解决问题的过程,体会数学在日常生活中的作用,初步形成综合运用数学知识解决问题的能力。2、经历对“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题,发展分析、推理的能力。3、体会学习数学的乐趣,提高学习数学的兴趣,建立学好数学的信心。二、单元重难点重点:1、了解抽屉原理的基本内容,能够利用抽屉原理创造性的解决实际问题。2、指导学生完成水资源浪费情况调查的实践课题。难点:理解抽屉原理的思维方法并应用解决问题。三、单元学情分析本单元重在培养学生的数学思想方法和训练其思维能力,以及通过实践活动用探究式的课题活动培养学生的动手实践能力及解决问题的能力。经历从实际生活中发现问题、提出问题、解决问题的过程,体会数学在日常生活中的作用,初步形成综合运用数学知识解决问题的能力。经历对“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题,发展分析、推理的能力。四、具体编排例1及其做一做例1借助把4支笔放进3个杯子里,不管怎么放,总有一个杯子至少放进了2支笔的情境,介绍了一类比较简单的鸽巢问题。为解释这一现象,教材呈现了两种思考方法:枚举法和假设法。教学时,教师可引导学生对枚举法和假设法进行比较,并通过逐步类推,使学生逐步理解抽屉原理的一般化模式。做一做中安排了抽纸牌的原理,和例题紧紧呼应。例2及其做一做例题介绍了另外一种抽屉问题,把多于kn个物体任意放进n个空抽屉,那么一定有一个抽屉放进了至少(k+1)个物体。教材提供了7本书放进了3个抽屉的情境。仍然用枚举法及其假设法探究该问题,并用有余数的除法形式73=21表达假设法的思路。教学时,引导学生理解假设法最核心的思路是把书尽量多地平均分给各个抽屉。做一做中让学生利用在例2的基础上进行迁移类推。例3例3是抽屉原理的具体应用,也是运用抽屉原理进行逆向思维的一个典型的例子。教学时,先引导学生思考这个问题与抽屉原理有什么联系,找出这里的抽屉是什么,抽屉有几个,在利用前面学习的抽屉原理进行反向推理。四、教学建议1、应让学生初步经历数学证明的过程。在小学阶段,虽然不需要学生对涉及到抽屉原理的相关现象给出严格的形式化的证明,但是仍然乐意引导学生用直观的方式进行就事论事的解释。教学时,可以鼓励学生借助学具实物操作或者画草图的方式进行说理。通过这样的方式,有助于提高学生的逻辑思维能力。2、应该有意识的培养学生模型思想抽屉原理的变式很多,应用更加具有灵活性。但是能否将这个具体问题和抽屉问题联系起来,能否找到问题中的具体情境和抽屉问题的一般化模型之间的内在关系是影响能否解决该问题的范畴。如果可以,在思考如何寻找隐藏在背后的抽屉问题的一般模型。3、适当把握教学要求抽屉原理的应用广泛并且灵活多变,因此,用抽屉原理来解决实际问题时,有时要找到实际问题与抽屉问题之间的联系并不容易。因

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论