canny算子.doc_第1页
canny算子.doc_第2页
canny算子.doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

经典图像边缘检测(综合法思想)Canny算子John Canny于1986年提出Canny算子,它与Marr(LoG) 边缘检测方法类似,也属于是先平滑后求导数的方法。John Canny研究了最优边缘检测方法所需的特性,给出了评价边缘检测性能优劣 的三个指标:l 好的信噪比,即将非边 缘点判定为边缘点的概率要低,将边缘点判为非边缘点的概率要低;l 高的定位性能,即检测 出的边缘点要尽可能在实际边缘的中心;l 对单一边缘仅有唯一响 应,即单个边缘产生多个响应的概率要低,并且虚假响应边缘应该得到最大抑制。用一句话说,就是希望在提高对景物边缘的敏感性的同时,可以抑制噪声的方法才是好的边缘提取方法。Canny算子求边缘点具体算法步骤如下:1. 用高斯滤波器平滑图像2. 用一阶偏导有限差分计算梯度幅值和方向.3. 对梯度幅值进行非极大值抑制 4. 用双阈值算法检测和连接边缘 步1. 图像与高斯平滑滤波器卷积: 步3. 对梯度幅值进行非极大值抑 制(non_maxima suppression,NMS):仅仅得到全局的梯度并不足以确定边缘,因此为确定边缘,必须保留局部梯度最大的点,而抑制非极大值。解决方法:利用梯度的方向:步4. 用 双阈值算法检测和连接边缘:对非极大值抑制图像作用两个阈值th1和th2,两者关系th1=0.4th2。我们把梯度值小于th1的像素的灰度值设为0,得到图像1。然后把梯度值小于th2的 像素的灰度值设为0,得到图像2。由于图像2的阈值较高,去除大部分噪音,但同时也损失了有用的边缘信息。而图像1的阈值较低,保留了较多的信息,我们可以以图像2为基础,以图像1为补充来连结图像的边缘。链接边缘的具体步骤如下:对图像2进行扫描,当遇到一个非零灰度的像素p(x,y)时,跟踪以p(x,y)为开始点的轮廓线,直到轮廓 线的终点q(x,y)。考察图像1中 与图像2中q(x,y)点位置对应的点s(x,y)的8邻 近区域。如果在s(x,y)点的8邻近区域中有非零像素s(x,y)存 在,则将其包括到图像2中,作为r(x,y)点。从r(x,y)开始, 重复第一步,直到我们在图像1和图像2中都无法继续为止。当完成对包含p(x,y)的 轮廓线的连结之后,将这条轮廓线标记为已经访问。回到第一步,寻找下一条轮廓线。

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论