高考数学大一轮复习 第八章 立体几何与空间向量 8.7 立体几何中的向量方法(一)——证明平行与垂直课件 理 北师大版.ppt_第1页
高考数学大一轮复习 第八章 立体几何与空间向量 8.7 立体几何中的向量方法(一)——证明平行与垂直课件 理 北师大版.ppt_第2页
高考数学大一轮复习 第八章 立体几何与空间向量 8.7 立体几何中的向量方法(一)——证明平行与垂直课件 理 北师大版.ppt_第3页
高考数学大一轮复习 第八章 立体几何与空间向量 8.7 立体几何中的向量方法(一)——证明平行与垂直课件 理 北师大版.ppt_第4页
高考数学大一轮复习 第八章 立体几何与空间向量 8.7 立体几何中的向量方法(一)——证明平行与垂直课件 理 北师大版.ppt_第5页
已阅读5页,还剩75页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

8 7立体几何中的向量方法 一 证明平行与垂直 基础知识自主学习 课时作业 题型分类深度剖析 内容索引 基础知识自主学习 1 直线的方向向量 在直线上任取一向量作为它的方向向量 2 平面的法向量可利用方程组求出 设a b是平面 内两不共线向量 n为平面 的法向量 则求法向量的方程组为 1 直线的方向向量与平面的法向量的确定 知识梳理 非零 2 用向量证明空间中的平行关系 1 设直线l1和l2的方向向量分别为v1和v2 则l1 l2 或l1与l2重合 2 设直线l的方向向量为v 与平面 共面的两个不共线向量v1和v2 则l 或l 3 设直线l的方向向量为v 平面 的法向量为u 则l 或l 4 设平面 和 的法向量分别为u1 u2 则 v1 v2 存在两个实数x y 使v xv1 yv2 v u u1 u2 3 用向量证明空间中的垂直关系 1 设直线l1和l2的方向向量分别为v1和v2 则l1 l2 2 设直线l的方向向量为v 平面 的法向量为u 则l 3 设平面 和 的法向量分别为u1和u2 则 v1 v2 v1 v2 0 v u u1 u2 u1 u2 0 判断下列结论是否正确 请在括号中打 或 1 直线的方向向量是唯一确定的 2 平面的单位法向量是唯一确定的 3 若两平面的法向量平行 则两平面平行 4 若两直线的方向向量不平行 则两直线不平行 5 若a b 则a所在直线与b所在直线平行 6 若空间向量a平行于平面 则a所在直线与平面 平行 1 已知a 1 0 0 b 0 1 0 c 0 0 1 则下列向量是平面abc法向量的是 考点自测 答案 解析 设n x y z 为平面abc的法向量 x y z 故选c 2 直线l的方向向量a 1 3 5 平面 的法向量n 1 3 5 则有a l b l c l与 斜交d l 或l 答案 解析 由a n知 n a 则有l 故选b 3 平面 的法向量为 1 2 2 平面 的法向量为 2 4 k 若 则k等于a 2b 4c 4d 2 两平面法向量平行 答案 解析 4 教材改编 设u v分别是平面 的法向量 u 2 2 5 当v 3 2 2 时 与 的位置关系为 当v 4 4 10 时 与 的位置关系为 答案 解析 当v 3 2 2 时 u v 2 2 5 3 2 2 0 当v 4 4 10 时 v 2u 5 教材改编 如图所示 在正方体abcd a1b1c1d1中 o是底面正方形abcd的中心 m是d1d的中点 n是a1b1的中点 则直线on am的位置关系是 答案 解析 垂直 题型分类深度剖析 题型一利用空间向量证明平行问题 例1 2016 重庆模拟 如图所示 平面pad 平面abcd abcd为正方形 pad是直角三角形 且pa ad 2 e f g分别是线段pa pd cd的中点 求证 pb 平面efg 证明 平面pad 平面abcd abcd为正方形 pad是直角三角形 且pa ad ab ap ad两两垂直 以a为坐标原点 建立如图所示的空间直角坐标系 则a 0 0 0 b 2 0 0 c 2 2 0 d 0 2 0 p 0 0 2 e 0 0 1 f 0 1 1 g 1 2 0 即 2 0 2 s 0 1 0 t 1 1 1 pb平面efg pb 平面efg 引申探究 本例中条件不变 证明平面efg 平面pbc 证明 又 ef平面pbc bc 平面pbc ef 平面pbc 同理可证gf pc 从而得出gf 平面pbc 又ef gf f ef 平面efg gf 平面efg 平面efg 平面pbc 思维升华 1 恰当建立空间直角坐标系 准确表示各点与相关向量的坐标 是运用向量法证明平行和垂直的关键 2 证明直线与平面平行 只需证明直线的方向向量与平面的法向量的数量积为零 或证直线的方向向量与平面内的不共线的两个向量共面 或证直线的方向向量与平面内某直线的方向向量平行 然后说明直线在平面外即可 这样就把几何的证明问题转化为向量运算 跟踪训练1 2016 北京海淀区模拟 正方体abcd a1b1c1d1中 m n分别是c1c b1c1的中点 求证 mn 平面a1bd 证明 如图所示 以d为坐标原点 da dc dd1所在直线分别为x轴 y轴 z轴建立空间直角坐标系 设正方体的棱长为1 则m 0 1 n 1 1 d 0 0 0 a1 1 0 1 b 1 1 0 设平面a1bd的法向量为n x y z 取x 1 得y 1 z 1 所以n 1 1 1 又mn平面a1bd 所以mn 平面a1bd 例2如图所示 正三棱柱 底面为正三角形的直三棱柱 abc a1b1c1的所有棱长都为2 d为cc1的中点 求证 ab1 平面a1bd 题型二利用空间向量证明垂直问题 命题点1证线面垂直 证明 方法一设平面a1bd内的任意一条直线m的方向向量为m 由共面向量定理 则存在实数 使m 令 a b c 显然它们不共面 并且 a b c 2 a b a c 0 b c 2 以它们为空间的一个基底 方法二如图所示 取bc的中点o 连接ao 因为 abc为正三角形 所以ao bc 因为在正三棱柱abc a1b1c1中 平面abc 平面bcc1b1 所以ao 平面bcc1b1 取b1c1的中点o1 以o为原点 分别以 所在直线为x轴 y轴 z轴建立空间直角坐标系 如图所示 则b 1 0 0 d 1 1 0 a1 0 2 a 0 0 b1 1 2 0 设平面a1bd的法向量为n x y z 1 2 2 1 0 令x 1 则y 2 z 故n 1 2 为平面a1bd的一个法向量 故ab1 平面a1bd 例3 2016 武汉模拟 如图 在四棱锥p abcd中 底面abcd是边长为a的正方形 侧面pad 底面abcd 且pa pd ad 设e f分别为pc bd的中点 1 求证 ef 平面pad 命题点2证面面垂直 证明 如图 取ad的中点o 连接op of 因为pa pd 所以po ad 因为侧面pad 底面abcd 平面pad 平面abcd ad 所以po 平面abcd 又o f分别为ad bd的中点 所以of ab 又abcd是正方形 所以of ad 以o为原点 oa of op所在直线分别为x轴 y轴 z轴建立空间直角坐标系 所以ef 平面pad 2 求证 平面pab 平面pdc 证明 又pa pd pd cd d 所以pa 平面pdc 又pa 平面pab 所以平面pab 平面pdc 思维升华 证明垂直问题的方法 1 利用已知的线面垂直关系构建空间直角坐标系 准确写出相关点的坐标 从而将几何证明转化为向量运算 其中灵活建系是解题的关键 2 其一证明直线与直线垂直 只需要证明两条直线的方向向量垂直 其二证明线面垂直 只需证明直线的方向向量与平面内不共线的两个向量垂直即可 当然 也可证直线的方向向量与平面的法向量平行 其三证明面面垂直 证明两平面的法向量互相垂直 利用面面垂直的判定定理 只要能证明一个平面内的一条直线的方向向量为另一个平面的法向量即可 跟踪训练2 2016 青岛模拟 如图 在多面体abc a1b1c1中 四边形a1abb1是正方形 ab ac bc ab b1c1綊bc 二面角a1 ab c是直二面角 求证 1 a1b1 平面aa1c 证明 二面角a1 ab c是直二面角 四边形a1abb1为正方形 aa1 平面bac 又 ab ac bc ab cab 90 即ca ab ab ac aa1两两互相垂直 建立如图所示的空间直角坐标系 点a为坐标原点 设ab 2 则a 0 0 0 b1 0 2 2 a1 0 0 2 c 2 0 0 c1 1 1 2 设平面aa1c的一个法向量n x y z a1b1 平面aa1c 2 ab1 平面a1c1c 证明 设平面a1c1c的一个法向量m x1 y1 z1 令x1 1 则y1 1 z1 1 即m 1 1 1 m 0 1 2 1 2 1 0 又ab1平面a1c1c ab1 平面a1c1c 题型三利用空间向量解决探索性问题 例4 2016 北京 如图 在四棱锥p abcd中 平面pad 平面abcd pa pd pa pd ab ad ab 1 ad 2 ac cd 1 求证 pd 平面pab 平面pad 平面abcd 平面pad 平面abcd ad ab ad ab 平面abcd ab 平面pad pd 平面pad ab pd 又pa pd pa ab a 且pa pb 平面pab pd 平面pab 证明 2 求直线pb与平面pcd所成角的正弦值 解答 取ad中点o 连接co po pa pd po ad 又 po 平面pad 平面pad 平面abcd po 平面abcd co 平面abcd po co ac cd co ad 以o为原点建立如图所示空间直角坐标系 易知p 0 0 1 b 1 1 0 d 0 1 0 c 2 0 0 设n x0 y0 1 为平面pcd的一个法向量 设pb与平面pcd的夹角为 3 在棱pa上是否存在点m 使得bm 平面pcd 若存在 求的值 若不存在 说明理由 解答 bm面pcd bm 平面pcd 思维升华 对于 是否存在 型问题的探索方式有两种 一种是根据条件作出判断 再进一步论证 另一种是利用空间向量 先设出假设存在点的坐标 再根据条件求该点的坐标 即找到 存在点 若该点坐标不能求出 或有矛盾 则判定 不存在 跟踪训练3 2016 深圳模拟 如图所示 四边形abcd是边长为1的正方形 md 平面abcd nb 平面abcd 且md nb 1 e为bc的中点 1 求异面直线ne与am所成角的余弦值 解答 如图 以d为坐标原点 建立空间直角坐标系 依题意得d 0 0 0 a 1 0 0 m 0 0 1 c 0 1 0 b 1 1 0 n 1 1 1 e 1 0 2 在线段an上是否存在点s 使得es 平面amn 若存在 求线段as的长 若不存在 请说明理由 解答 假设在线段an上存在点s 使得es 平面amn 连接ae 如图所示 由es 平面amn 典例 12分 2016 吉林实验中学月考 如图1所示 正 abc的边长为4 cd是ab边上的高 e f分别是ac和bc边的中点 现将 abc沿cd翻折成直二面角a dc b 如图2所示 1 试判断直线ab与平面def的位置关系 并说明理由 2 求二面角e df c的余弦值 3 在线段bc上是否存在一点p 使ap de 证明你的结论 利用向量法解决立体几何问题 思想与方法系列19 规范解答 思想方法指导 几何画板展示 对于较复杂的立体几何问题可采用向量法 1 用向量法解决立体几何问题 是空间向量的一个具体应用 体现了向量的工具性 这种方法可把复杂的推理证明 辅助线的作法转化为空间向量的运算 降低了空间想象演绎推理的难度 体现了由 形 转 数 的转化思想 2 两种思路 选好基底 用向量表示出几何量 利用空间向量有关定理与向量的线性运算进行判断 建立空间直角坐标系 进行向量的坐标运算 根据运算结果的几何意义解释相关问题 返回 解 1 ab 平面def 理由如下 在 abc中 由e f分别是ac bc中点 得ef ab 又ab平面def ef 平面def ab 平面def 1分 2 以d为原点 建立如图所示的空间直角坐标系 则a 0 0 2 b 2 0 0 c 0 2 0 e 0 1 f 1 0 3分 设平面edf的法向量为n x y z 返回 课时作业 1 2016 茂名调研 已知a 2 1 3 b 1 4 2 c 7 5 若a b c三向量共面 则实数 等于 答案 解析 由题意得c ta b 2t t 4 3t 2 1 2 3 4 5 6 7 8 9 10 11 12 2 2016 西安质检 若平面 的法向量分别是n1 2 3 5 n2 3 1 4 则a b c 相交但不垂直d 以上答案均不正确 答案 解析 n1 n2 2 3 3 1 5 4 0 n1与n2不垂直 且不共线 与 相交但不垂直 1 2 3 4 5 6 7 8 9 10 11 12 3 已知平面 内有一点m 1 1 2 平面 的一个法向量为n 6 3 6 则下列点p中 在平面 内的是a p 2 3 3 b p 2 0 1 c p 4 4 0 d p 3 3 4 答案 解析 点p在平面 内 同理可验证其他三个点不在平面 内 1 2 3 4 5 6 7 8 9 10 11 12 a 相交b 平行c 在平面内d 平行或在平面内 答案 解析 ab与平面cde平行或在平面cde内 1 2 3 4 5 6 7 8 9 10 11 12 5 设u 2 2 t v 6 4 4 分别是平面 的法向量 若 则t等于a 3b 4c 5d 6 答案 解析 则u v 2 6 2 4 4t 0 t 5 1 2 3 4 5 6 7 8 9 10 11 12 6 2016 泰安模拟 如图所示 在正方体abcd a1b1c1d1中 棱长为a m n分别为a1b和ac上的点 a1m an 则mn与平面bb1c1c的位置关系是a 斜交b 平行c 垂直d mn在平面bb1c1c内 答案 解析 1 2 3 4 5 6 7 8 9 10 11 12 建立如图所示的空间直角坐标系 又c1d1 平面bb1c1c 所以 0 a 0 为平面bb1c1c的一个法向量 所以mn 平面bb1c1c 1 2 3 4 5 6 7 8 9 10 11 12 7 2016 广州质检 已知平面 内的三点a 0 0 1 b 0 1 0 c 1 0 0 平面 的一个法向量n 1 1 1 则不重合的两个平面 与 的位置关系是 答案 解析 设平面 的法向量为m x y z m 1 1 1 m n m n 1 2 3 4 5 6 7 8 9 10 11 12 答案 解析 1 2 3 4 5 6 7 8 9 10 11 12 是平面abcd的法向量 则 正确 ab ap ad ap 则 正确 1 2 3 4 5 6 7 8 9 10 11 12 9 如图 圆锥的轴截面sab是边长为2的等边三角形 o为底面中心 m为so中点 动点p在圆锥底面内 包括圆周 若am mp 则点p形成的轨迹长度为 答案 解析 1 2 3 4 5 6 7 8 9 10 11 12 由题意可知 建立空间直角坐标系 如图所示 则a 0 1 0 b 0 1 0 s 0 0 m 0 0 设p x y 0 1 2 3 4 5 6 7 8 9 10 11 12 10 如图 在三棱锥p abc中 ab ac d为bc的中点 po 平面abc 垂足o落在线段ad上 已知bc 8 po 4 ao 3 od 2 1 证明 ap bc 证明 1 2 3 4 5 6 7 8 9 10 11 12 如图所示 以o为坐标原点 od op所在直线为y轴 z轴 建立空间直角坐标系 则o 0 0 0 a 0 3 0 b 4 2 0 c 4 2 0 p 0 0 4 1 2 3 4 5 6 7 8 9 10 11 12 2 若点m是线段ap上一点 且am 3 试证明平面amc 平面bmc 证明 1 2 3 4 5 6 7 8 9 10 11 12 由 1 知ap 5 又am 3 且点m在线段ap上 1 2 3 4 5 6 7 8 9 10 11 12 又根据 1 的结论知ap bc 且bm bc b ap 平面bmc 于是am 平面bmc 又am 平面amc 故平面amc 平面bmc 1 2 3 4 5 6 7 8 9 10 11 12 11 2016 长沙模拟 如图 在四棱锥p abcd中 pd 底面abcd

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论