机电系统设计.doc_第1页
机电系统设计.doc_第2页
机电系统设计.doc_第3页
机电系统设计.doc_第4页
机电系统设计.doc_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、比例阀与伺服阀的结构及工作原理阀口可以根据需要打开任意一个开度,由此控制通过流量的大小,这类阀有手动控制的,如节流阀,也有电控的,如比例阀、伺服阀。所以使用比例阀或伺服阀的目的就是:以电控方式实现对流量的节流控制(当然经过结构上的改动也可实现压力控制等),既然是节流控制,就必然有能量损失,伺服阀和其它阀不同的是,它的能量损失更大一些,因为它需要一定的流量来维持前置级控制油路的工作。1.1伺服阀的结构及工作原理伺服阀的主阀一般来说和换向阀一样是滑阀结构,只不过阀芯的换向不是靠电磁铁来推动,而是靠前置级阀输出的液压力来推动,这一点和电液换向阀比较相似,只不过电液换向阀的前置级阀是电磁换向阀,而伺服阀的前置级阀是动态特性比较好的喷嘴挡板阀或射流管阀。也就是说,伺服阀的主阀是靠前置级阀的输出压力来控制的,而前置级阀的压力则来自于伺服阀的入口p,假如p口的压力不足,前置级阀就不能输出足够的压力来推动主阀芯动作。而我们知道,当负载为零的时候,如果四通滑阀完全打开,p口压力t口压力阀口压力损失(忽略油路上的其它压力损失),如果阀口压力损失很小,t口压力又为零,那么p口的压力就不足以供给前置级阀来推动主阀芯,整个伺服阀就失效了。所以伺服阀的阀口做得偏小,即使在阀口全开的情况下,也要有一定的压力损失,来维持前置级阀的正常工作。伺服阀其实缺点极多:能耗浪费大、容易出故障、抗污染能力差、价格昂贵等等,好处只有一个:动态性能是所有液压阀中最高的。就凭着这一个优点,在很多对动态特性要求高的场合不得不使用伺服阀,如飞机火箭的舵机控制、汽轮机调速等等。动态要求低一点的,基本上都是比例阀的天下了。一般说来,好像伺服系统都是闭环控制,比例多用于开环控制;其次比例阀类型多,有比例压力阀、流量控制阀等,控制比伺服要灵活一些。从他们内部结构看,伺服阀多是零遮盖,比例阀则有一定的死区,控制精度要低,响应要慢。但从发展趋势看,特别在比例方向流量控制阀和伺服阀方面,两者性能差别逐渐在缩小,另外比例阀的成本比伺服阀要低许多,抗污染能力也强。(1) 力反馈式电液伺服阀力反馈式电液伺服阀的结构和原理如图28所示,无信号电流输入时,衔铁和挡板处于中间位置。这时喷嘴4二腔的压力pa=pb,滑阀7二端压力相等,滑阀处于零位。输入电流后,电磁力矩使衔铁2 同挡板偏转角。设为顺时针偏转,则由于挡板的偏移使papb,滑阀向右移动。滑阀的移动,通过反馈弹簧片又带动挡板和衔铁反方向旋转(逆时针),二喷嘴压力差又减小。在衔铁的原始平衡位置(无信号时的位置)附近,力矩马达的电磁力矩、滑阀二端压差 通过弹簧片作用于衔铁的力矩以及喷嘴压力作用于挡板的力矩三者取得平衡,衔铁就不再运动。同时作用于滑阀上的油压力与反馈弹簧变形力相互平衡,滑阀在离开零位一段距离的位置上定位。这种依靠力矩平衡来决定滑阀位置的方式称为力反馈式。如果忽略喷嘴作用于挡板上的力,则马达电磁力矩与滑阀二端不平衡压力所产生的力矩平衡,弹簧片也只是受到电磁力矩的作用。因此其变形,也就是滑阀离开零位的距离和电磁力矩成正比。同时由于力矩马达的电磁力矩和输入电流成正比,所以滑阀的位移与输入的电流成正比,也就是通过滑阀的流量与输入电流成正比,并且电流的极性决定液流的方向,这样便满足了对电液伺服阀的功能要求。由于采用了力反馈,力矩马达基本上在零位附近工作,只要求其输出电磁力矩与输入电流成正比(不象位置反馈中要求力矩马达衔铁位移和输入电流成正比),因此线性度易于达到。另外滑阀的位移量在电磁力矩一定的情况下,决定于反馈弹簧的刚度,滑阀位移量便于调节,这给设计带来了方便。采用了衔铁式力矩马达和喷嘴挡板使伺服阀结构极为紧凑,并且动特性好。但这种伺服阀工艺要求高,造价高,对于油的过滤精度的要求也较高。所以这种伺服阀适用于要求结构紧凑,动特性好的场合。力反馈式电液伺服阀的方框图29。图29力反馈式伺服阀方框 图 (2) 位置反馈式伺服阀 图30为二级滑阀式位置反馈伺服阀结构。该类型电液伺服阀由电磁部分,控制滑阀和 主滑阀组成。电磁部分是一只力马达,原理如前所述。动圈靠弹簧定位。前置放大器采用滑阀式(一级滑阀)。如图所示,在平衡位置(零位)时,压力油从P腔进入,分别通过P腔槽,阀套窗口,固定节流孔3、5 到达上、下控制窗口,然后再通过主阀(二级阀芯)的回油口回油箱。输入正向信号电流时,动圈向下移动,一级阀芯随之下移。这时,上控制窗口的过流面积减小,下控制窗口的过流面积增大。所以上控制腔压力升高而下控制腔的压力降低,使作用在主阀芯(二级阀芯)两端的液压力失去平衡。主阀芯在这一液压力作用下向下移动。主阀芯下移,使上控制窗口的过流面积逐渐增大,下控制窗口的过流面积逐渐缩小。当主阀芯移动到上、下控制窗口过流面积重新相等的位置时,作用于主阀芯两端的液压力重新平衡。主阀芯就停留在新的平衡位置上,形成一定的开口。这时,压力油由P腔通过主阀芯的工作边到A腔而供给负载。回油则通过B腔,主阀芯的工作边到T腔回油箱。输入信号电流反向时,阀的动作过程与此相反。油流反向为PB,AT。上述工作过程中,动圈的位移量,一级阀芯(先导阀芯)的位移量与主阀芯的位移量均相等。因动圈的位移量与输入信号电流成正比,所以输出的流量和输入信号电流成正比。二级滑阀型位置反馈式伺服阀的方框图31所示。 该型电液伺服阀具有结构简单,工作可靠,容易维护,可在现场进行调整,对油液清洁 度要求不太高。 图31位置反馈式电液伺服阀方框图伺服阀的工作原理图2是伺服阀的工作原理图。伺服阀是双喷嘴挡板式伺服阀,由两级液压放大及机械反馈系统所组成。第一级液压放大是双喷嘴和挡板系统;第二级功率放大是滑阀系统。伺服阀线圈接受一正向电流指令信号时,线圈将会产生电磁力作用于衔铁的两端,衔铁因此而带动挡板偏转,挡板的偏转将减少某一个喷嘴的流量,进而改变了与此喷嘴相通的滑阀一侧的压力,推动滑阀朝一边移动,滑阀上的凸肩打开了EH压力油供油口,同时滑阀另一凸肩打开油动机的进油口,油动机进油,汽门打开,汽门的位置发送器LVDT 输出的反馈信号增大,指令与反馈信号的偏差在不断减少,至伺服阀的开阀驱动指令也在不断减小,当伺服阀的输出指令与弹簧回复力平衡时,挡板回到中间位置,滑阀处于平衡状态,油动机此时停止进油,汽门位置保持不变;反之线圈接受负向电流信号时,滑阀向另一边移动,滑阀凸肩关闭进油口,另一凸肩打开回油口,油动机泄油,其它动作与开阀原理相同。电液伺服阀是有机械零偏的,其主要作用是当伺服阀失去控制信号或线圈损坏时,靠它的机械偏置使滑阀移动打开泄,使油动机下缸与回油相通,使气门关闭,防止气门突开引起机组超速。 1.2伺服阀与比例阀的区别 伺服阀与比例阀之间的差别并没有严格的规定,因为比例阀的性能越来越好,逐渐向伺服阀靠近,所以近些年出现了比例伺服阀。比例阀和伺服阀的区别主要体现在以下几点:1.驱动装置不同。比例阀的驱动装置是比例电磁铁;伺服阀的驱动装置是力马达或力矩马达;2.性能参数不同。滞环、中位死区、频宽、过滤精度等特性不同,因此应用场合不同,伺服阀和伺服比例阀主要应用在闭环控制系统,其它结构的比例阀主要应用在开环控系统及闭环速度控制系统3.伺服阀中位没有死区,比例阀有中位死区;4.伺服阀的频响(响应频率)更高,可以高达200Hz左右,比例阀一般最高几十Hz;5.伺服阀对液压油液的要求更高,需要精过滤才行,否则容易堵塞,比例阀要求低一些;6.阀芯结构及加工精度不同。比例阀采用阀芯+阀体结构,阀体兼作阀套。伺服阀和伺服比例阀采用阀芯+阀套的结构。7.中位机能种类不同。比例换向阀具有与普通换向阀相似的中位机能,而伺服阀中位机能只有O型(Rexroth产品的E型)。8.阀的额定压降不同。而比例伺服阀性能介于伺服阀和比例阀之间。比例换向阀属于比例阀的一种,用来控制流量和流向。2、 气动无杆活塞缸的组成及特点气动夹具因使用空气作为工作介质而有“绿色夹具”之美誉,设备成本低,结合PLC控制可实现高度的自动化装夹,广泛应用于各自动化设备的夹紧装置中。然而气体的可压缩性使气动系统的压力不高( 0.8MPa),如何让气动系统配合有效增力机构,使设备完成更多工作,是人们追寻的一个目标。 传统的基于有杆活塞缸的气动夹具如图1所示。由于铰杆增力机构中间的铰接点A绕B点作摆动运动,需要选用铰接式气缸来增加自由度,其缺点是结构刚性较固定式气缸要低,在工作过程中会产生摆动,易造成冲击和噪声,而固定式无杆活塞缸能较好地解决这一问题。 固定式无杆活塞缸如图2所示,它与普通气缸的不同在于其活塞径向有一过渡滑块,其两端对称地铰接两个铰杆,当活塞在压力作用下左右运动时,滑块可在垂直方向滑动。当系统夹紧时,铰点B将绕A点摆动,而滑块垂直方向的运动可增加一个自由度,补偿B点垂直方向的位移。图2所示系统可看出,采用过渡滑块在活塞径向孔中的直线运动代替了图1系统中整个气缸的摆动,结构紧凑、刚性好。图 2所示的无杆活塞缸当压力气体作用于活塞时产生的推力为 (1)式中 ,D 活塞直径(mm); p无杆活塞缸输人压力(SPa)。 在加人铰杆 Ad3、BC后,若忽略摩擦力等因素时,该系统的理论输出力为 (2)式中 ,a 理论压角(rad或 。)。 而系统的实际输出力为 (3)式中, 铰链副的当量摩擦角,=arcsin (r为铰链轴半径;z为铰链上两铰链孔的中心距;f为铰链副的摩擦因数);l 气缸的机械效率,通常取0.9。 固定式无杆活塞缸由于在其活塞上增加了一个滑块而增加了一个自由度,配合增力机构可提高夹紧力,避免了气动系统因气体压缩性而使系统压力不高的弱点,将其与具有可移动支点的杠杆式压板配合使用,可在不改变气动系统配置的情况下,配合机械增力机构,可以得到较大力放大系数,从而可代替容易产生污染的液压夹具。3、 气动技术应用情况及研究和发展的重要性 随着科学技术的发展,自动控制技术已被广泛应用于工农业生产和国防建设。实现自动化的技术手段,在目前主要有两个:电气(电子)控制和流体动力控制。流体动力控制有三类:(1) 液压控制,工作流体主要是矿物油。(2) 气压控制,工作介质主要是压缩空气,还有燃气和蒸气。(3) 射流技术,工作介质有气体也有液体,该技术在一些多管道的生产流程中得到应用。气压伺服控制是以气体为工作介质,实现能量传递、转换、分配及控制的一门技术。气动系统因其节能、无污染、结构简单、价格低廉、高速、高效、工作可靠、寿命长、适应温度范围广、工作介质具有防燃、防爆、防电磁干扰等一系列的优点而得到了迅速的发展。众多的报道表明,气动技术是实现现代传动和控制的关键技术,它的发展水平和速度直接影响机电产品的数量和水平,采用气动技术的程度已成为衡量一个国家的重要标志。据资料表明,目前气动控制装置在自动化中占有很重要的地位,已广泛应用于各行业,现概括如下:(1) 绝大多数具有管道生产流程的各生产部门往往采用气压控制。如:石油加工、气体加工、化工、肥料、有色金属冶炼和食品工业等。(2) 在轻工业中,电气控制和气动控制装置大体相等。在我国已广泛用于纺织机械、造纸和制革等轻工业中。(3) 在交通运输中,列车的制动闸、货物的包装与装卸、仓库管理和车辆门窗的开闭等。(4) 在航空工业中也得到广泛的应用。因电子装置在没有冷却装置下很难在300500高温条件下工作,故现代飞机上大量采用气动装置。同时,火箭和导弹中也广泛采用气动装置。(5) 鱼雷的自动装置大多是气动的,因为以压缩空气作为动力能源,体积小、重量轻,甚至比具有相同能量的电池体积还要小、重量还要轻。(6) 在生物工程、医疗、原子能中也有广泛的应用。(7) 在机械工业领域也得到广泛的应用。从气动的特点和应用情况可知,研究和发展气动技术具有非常重要的理论价值和实际意义。气动技术在美国、法国、日本、德国等主要工业国家的发展和研究非常迅速,我国于七十年代初期才开始重视和组织气动技术的研究。无论从产品规格、种类、数量、销售量、应用范围,还是从研究水平、研究人员的数量上来看,我国与世界主要工业国家相比都十分落后。为发展我国的气动行业,提高我国的气动技术水平,缩短与发达国家的差距,开展和加强气动技术的研究是很必要的。4、 导杆、导轨的结构原理(1)塑料滑动导轨目前,数控机床所使用的滑动导轨材料为铸铁对塑料或镶钢对塑料滑动导轨。导轨塑料常用聚四氟乙烯导轨软带和环氧型耐磨导轨涂层两类。(1)聚四氟乙烯导轨软带的特点1)摩擦特性好:金属聚四氟乙烯导轨软带的动静摩擦因数基本不变。2)耐磨特性好:聚四氟乙烯导轨软带材料中含有青铜、二硫化铜和石墨,因此其本身即具有自润滑作用,对润滑油的要求不高。此外,塑料质地较软,即使嵌入金属碎屑、灰尘等,也不致损伤金属导轨面和软带本身,可延长导轨副的使用寿命。3)减振性好:塑料的阻尼性能好,其减振效果、消声的性能较好,有利于提高运动速度。4)工艺性好:可降低对粘贴塑料的金属基体的硬度和表面质量要求,而且塑料易于加工(铣、刨、磨、刮),使导轨副接触面获得优良的表面质量。聚四氟乙烯导轨软带被广泛用于中小型数控机床的运动导轨中。图8-14为某加工中心工作台的剖面图。作为移动部件的工作台导轨面(包括下压板和镶条)都粘贴有聚四氟乙烯导轨软带。导轨软带使用工艺简单。首先将导轨粘贴面加工至表面粗糙度R3.2m左右。用汽油或丙酮清洗粘结面后,用胶粘剂粘合。加压初固化12h后合拢到配对的固定导轨或专用夹具上,施加一定的压力,并在室温固化24h后,取下清除余胶,即可开油槽和精加工。(2)环氧型耐磨涂层是以环氧树脂和二硫化钼为基体,加入增塑剂,混合成液状或膏状为一组份和固化剂为另一组份的双组份塑料涂层。德国生产的SKC3和我国生产的HNT环氧型耐磨涂层都具有以下特点:1)良好的加工性:可经车、铣、刨、钻、磨削和刮削。2)良好的摩擦性。3)耐磨性好。4)使用工艺简单。(2)滚动导轨 直线滚动导轨副的结构和特点 滚动导轨作为滚动摩擦副的一类,具有以下特点:摩擦因数小(0.0030.005),运动灵活;动、静摩擦因数基本相同,因而起动阻力小,而不易产生爬行;可以预紧,刚度高;寿命长;精度高;润滑方便,可以采用脂润滑,一次填装,长期使用;由专业厂生产,可以外购选用。因此滚动导轨副被广泛应用于精密机床、数控机床、测量机和测量仪器上。滚动导轨副的主要缺点是抗冲击载荷的能力较差,且滚动导轨副对灰尘屑末等较敏感,应有良好的防护罩。滚动导轨有多种形式,目前数控机床常用的滚动导轨为直线滚动导轨,这种导轨的外形和结构如图8-15所示。1导轨体 2侧面密封垫 3保持器 4承载球列 5端部密封垫 6端盖 7滑块 8润滑油杯 导轨及滑块座的固定通常采用以下几种方法,如图8-16ae所示。导轨和滑块座与侧基面靠上定位台阶后,应先从另一面顶紧然后再固定。图8-16a为用紧定螺钉顶紧然后再用螺钉固定;图8-16b为用楔块顶紧;图8-16c为用压板顶紧,也可在压板上再加紧固螺钉;图8-16d中导轨的侧基面是装配式,工艺性较好:图8-16e为在同一平面内平行安装两副导轨,该方法适用于有冲冲击和振动,精度要求较高的场合;数控机床滚动导轨的安装,多数采用此办法。 安装前必须检查导轨是否有合格证,有否碰伤或锈蚀,将防锈油清洗干净,清除装配表面的毛刺、撞击突起物及污物等;检查装配联接部位的螺栓孔是否吻合,如果发生错位而强行拧入螺栓,将会降低运行精度。(3)液体静压导轨液体静压导轨是将具有一定压力的油液经节流器输送到导轨面的油腔,形成承载油膜,将相互接触的金属表面隔开,实现液体摩擦。这种导轨的摩擦因数小(约0.0005),机械效率高:由于导轨面间有一层油膜,吸振性好;导轨面不相互接触,不会磨损,寿命长,而且在低速下运行也不易产生爬行。但静压导轨结构复杂,制造成本较高。静压导轨按导轨形式可分为开式和闭式两种;按供油方式分为恒压(即定压)供油和恒流(即定量)供油两种。5、滚珠丝杠 滚珠丝杆是将回转运动转化为直线运动,或将直线运动转化为回转运动的理想的产品。 滚珠丝杆由螺杆、螺母和滚珠组成。它的功能是将旋转运动转化成直线运动,这是滚珠螺丝的进一步延伸和发展,这项发展的重要意义就是将轴承从滚动动作变成滑动动作。由于具有很小的摩擦阻力,滚珠丝杠被广泛应用于各种工业设备和精密仪器。 滚珠丝杆是工具机和精密机械上最常使用的传动元件,其主要功能是将旋转运动转换成线性运动,或将扭矩转换成轴向反覆作用力,同时兼具高精度、可逆性和高效率的特点。滚珠丝杆的特点:1)无侧隙、刚性高 滚珠丝杠副可以加予压,由于予压力可使轴向间隙达到负值,进而得到较高的刚性(滚珠丝杠内通过给滚珠加予压力,在实际用于机械装置等时,由于滚珠的斥力可使丝母部的刚性增强)。2)高速进给可能 滚珠丝杠由于运动效率高、发热小、所以可实现高速进给(运动)。 3)高精度的保证 滚珠丝杆副是用日本制造的世界最高水平的机械设备连贯生产出来的,特别是在研削、组装、检查各工序的工厂环境方面,对温度湿度进行了严格的控制,由于完善的品质管理体制使精度得以充分保证。4)与滑动丝杠副相比驱动力矩为1/3 由于滚珠丝杠副的丝杠轴与丝母之间有很多滚珠在做滚动运动,所以能得到较高的运动效率。与过去的滑动丝杠副相比驱动力矩达到1/3以下,即达到同样运动结果所需的动力为使用滚动丝杠副的1/3。在省电方面很有帮助。5)微进给可能 滚珠丝杠副由于是利用滚珠运动,所以启动力矩极小,不会出现滑动运动那样的爬行现象,能保证实现精确的微进给。6、燕尾的结构7、行星轮的传动结构原理1)齿圈固定,太阳轮主动,行星架被动。从演示中可以看出,此种组合为降速传动,通常传动比一般为2.55,转向相同。2)齿圈固定,行星架主动,太阳轮被动。此种组合为升速传动,传动比一般为0.20.4,转向相同。 3)太阳轮固定,齿圈主动,行星架被动。此种组合为降速传动,传动比一般为1.251.67,转向相同。4)太阳轮固定

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论