




已阅读5页,还剩25页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一章 立体几何初步 学习目标 1 理解正棱柱 正棱锥 正棱台的侧面积及表面积的定义及计算公式 2 了解球 圆柱 圆锥 圆台的表面积计算公式 1 1 6棱柱 棱锥 棱台和球的表面积 1 预习导学挑战自我 点点落实 2 课堂讲义重点难点 个个击破 3 当堂检测当堂训练 体验成功 知识链接 1 棱柱的侧面形状是 棱锥的侧面是 棱台的侧面形状是 2 圆柱 圆锥 圆台的底面形状是 3 三角形的面积s ah 其中a为底 h为高 圆的面积s 其中r为半径 平行四边形 三角形 梯形 圆 r2 预习导引 柱体 锥体 台体 球的表面积 2 r r l r r l r 2 r2 r l rl 4 r2 要点一棱柱 棱锥 棱台的表面积例1已知正四棱锥底面边长为4 高与斜高夹角为30 求它的侧面积和表面积 解如图所示 设正四棱锥的高为po 斜高为pe 底面边心距为oe 它们组成一个直角三角形poe s表面积 42 32 48 即该正四棱锥的侧面积是32 表面积是48 规律方法1 要求锥体的侧面积及表面积 要利用已知条件寻求公式中所需的条件 一般用锥体的高 斜高 底面边心距等量组成的直角三角形求解相应的量 2 空间几何体的表面积运算 一般是转化为平面几何图形的运算 往往通过解三角形来完成 跟踪演练1若一个底面是正三角形的三棱柱的主视图如图所示 求其表面积 解由主视图知三棱柱的高h 1 底面三角形边长为2 要点二空间几何体的表面积例2如图所示 已知直角梯形abcd bc ad abc 90 ab 5cm bc 16cm ad 4cm 求以ab所在直线为轴旋转一周所得几何体的表面积 解以ab所在直线为轴旋转一周所得几何体是圆台 其上底半径是4cm 下底半径是16cm 该几何体的表面积为 4 16 13 42 162 532 cm2 规律方法1 圆柱 圆锥 圆台的相关几何量都集中体现在轴截面上 因此准确把握轴截面中的相关量是求解旋转体表面积的关键 2 棱锥及棱台的表面积计算常借助斜高 侧棱及其在底面的射影与高 底面边长等构成的直角三角形 或梯形 求解 跟踪演练2在题设条件不变的情况下 求以bc所在直线为轴旋转一周所得几何体的表面积 解以bc所在直线为轴旋转一周所得几何体是圆柱和圆锥的组合体 如图所示 其中圆锥的高为16 4 12 cm 圆柱的母线长为ad 4cm 故该几何体的表面积为2 5 4 52 5 13 130 cm2 要点三球的表面积例3有三个球 第一个球内切于正方体 第二个球与这个正方体各条棱相切 第三个球过这个正方体的各个顶点 求这三个球的表面积之比 解设正方体的棱长为a 1 正方体的内切球球心是正方体的中心 切点是六个面正方形的中心 经过四个切点及球心作截面 如图 2 球与正方体的各棱的切点在每条棱的中点 过球心作正方体的对角面得截面 如图 3 正方体的各个顶点在球面上 过球心作正方体的对角面得截面 如图 综上可得s1 s2 s3 1 2 3 规律方法1 在处理球和长方体的组合问题时 通常先作出过球心且过长方体对角面的截面图 然后通过已知条件求解 2 球的表面积的考查常以外接球的形式出现 可利用几何体的结构特征构造熟悉的正方体 长方体等 通过彼此关系建立关于球的半径的等式求解 跟踪演练3已知h是球o的直径ab上一点 ah hb 1 2 ab 平面 h为垂足 截球o所得截面的面积为 则球o的表面积为 解析如图 设球o的半径为r 截面面积为 hm 2 hm 1 在rt hmo中 om2 oh2 hm2 1 已知两个球的半径之比为1 2 则这两个球的表面积之比为 a 1 2b 1 4c 1 6d 1 8解析 半径比为1 2 且s 4 r2 表面积比为半径比的平方 故选b 1 2 3 4 5 b 2 底面为正方形的直棱柱 它的底面对角线长为 体对角线长为 则这个棱柱的侧面积是 a 2b 4c 6d 8 1 2 3 4 5 s侧 1 2 4 8 d 1 2 3 4 5 3 已知正方体的棱长为1 其俯视图是一个面积为1的正方形 左视图是一个面积为的矩形 则该正方体的主视图的面积等于 1 2 3 4 5 解析根据正方体的俯视图及左视图特征想象出其主视图后求面积 答案d 4 一个几何体的三视图及其尺寸如图 单位 cm 则该几何体的表面积为 a 12 b 18 c 24 d 36 1 2 3 4 5 解析由三视图知该几何体为圆锥 底面半径r 3 母线l 5 s表 rl r2 24 故选c c 5 圆台的上 下底面半径分别是3和4 母线长为6 则其表面积等于 a 72b 42 c 67 d 72 解析s圆台表 s圆台侧 s上底 s下底 3 4 6 32 42 67 1 2 3 4 5 c 课堂小结 1 如果长方体的长 宽 高分别为a b c 那么它的表面积s表 2 ab bc ac 如果正方体的棱长为a 那么它的表面积为s表 6a2 2 求棱锥的表面积 可以先求侧面积 再求底面积 求侧面积 要清楚各侧
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论