高考数学一轮复习 热点难点精讲精析 4.2数系的扩充与复数的引入.doc_第1页
高考数学一轮复习 热点难点精讲精析 4.2数系的扩充与复数的引入.doc_第2页
高考数学一轮复习 热点难点精讲精析 4.2数系的扩充与复数的引入.doc_第3页
高考数学一轮复习 热点难点精讲精析 4.2数系的扩充与复数的引入.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2014年高考一轮复习热点难点精讲精析:4.2数系的扩充与复数的引入一、复数的有关概念及复数的几何意义相关链接1、复数的分类2、处理有关复数概念的问题,首先要找准复数的实部与虚部(若复数为非标准的代数形式,则应通过代数运算化为代数形式),然后根据定义解题。方法提示:1.复数的分类及对应点的位置问题都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部、虚部满足的方程(不等式)组即可.2.求复数模的常规思路是利用复数的有关运算先求出复数z,然后利用复数的模长公式求解. 3复数的几何意义可以让我们运用数形结合思想把复数、向量、解析几何有机的结合在一起,能够更加灵活的解决问题.高考中对复数几何意义的考查主要集中在复数对应点的位置、加减法的几何意义、模的意义等.例题解析例1当实数m为何值时,z=lg(m2-2m-2)+(m2+3m+2)i(1) 纯虚数;(2)为实数;(3)对应的点在复平面内的第二象限内。思路解析:根据复数分类的条件和复数的几何意义求解。解答:根据复数的有关概念,转化为实部和虚部分别满足的条件求解。(1)若z为纯虚数,则解得m=3(2)若z为实数,则解得m=-1或m=-2(3)若z的对应点在第二象限,则解得-1m1-或1+m3.即(1)m=3时,z为纯虚数;(2)m=-1或m=-2时,z为实数;(3)-1m1-或1+m3时,z的对应点在第二象限内。例2复数在复平面上对应的点位于( )()第一象限 (b)第二象限(c)第三象限 (d)第四象限 思路解析: 化简z为代数形式,确定其实部、虚部.解答: 选.因为所以所以z对应的点位于第一象限.二、复数相等相关链接1、a+bi=c+di.2、利用复数相等可实现复数问题实数问题的转化。解题时要把等号两边的复数化为标准的代数形式。注:对于复数z,如果没有给出代数形式,可设z= a+bi(a,br)。例题解析例已知集合m=(a+3)+(b2-1)i,8,集合n=3,(a2-1)+(b+2)同时满足mnm,mn,求整数a,b思路解析:判断两集合元素的关系列方程组分别解方程组检验结果是否符合条件。解答:或或由得a=-3,b=2,经检验,a=-3,b=-2不合题意,舍去。a=-3,b=2由得a=3, b=-2.又a=-3,b=-2不合题意,a=3,b=-2;由得,此方程组无整数解。综合得a=-3,b=2或a=3,b=-2。三、复数的代数运算相关链接1、(1)复数的加法、减法、乘法运算可以类比多项式运算,除法关键是分子分母同乘以分母的共轭复数,注意要把i的幂写成最简形式.(2)记住以下结论,可提高运算速度:(1i)2=2i;i4n=1,i4n+1=i,i4n+2=-1,i4n+3=-i(nn)2、复数的四则运算类似于多项式的四则运算,此时含有虚数单位i的看作一类同类项,不含i的看作另一类同类项,分别合并即可,但要注意把i的幂写成最简单的形式,在运算过程中,要熟透i的特点及熟练应用运算技巧。例题解析例1已知z1,z2为复数,(3i)z1为实数,且|z2|求z2.思路解析: 可不设代数形式利用整体代换的思想求解.z1z2(2i),(3i)z1z2(2i)(3i)z2(55i)r,|z2|z2(55i)|50,z2(55i)50,例2解答: 注: 复数的综合运算中会涉及模、共轭及分类等,求z时要注意是把z看作一个整体还是设为代数形式应用方程思想;当z是实数或纯虚数时注意常见结论的应用.四、复数加减法的几何意义例如图,平行四边形oabc,顶点o、a、c分别表示0,3+2i,-2+4i,试求:(1)表示的复数,表示的复数;(2)对角线所表示的复数。思路解析:求某个向量对应的复数,只要求出向量的起点和终点对应的复数即可。解答:(1)=-,表示的复数为-3-2i.=,所表示的复数为-3-2i。(2)=-,所表示的复数为(3+2i)-(-2+4i)=5-2i.注:解决这类题目是利用复数a+bi(a,br)与复平面内以原点为起点的向量之间一一对应的关系,相等的向量

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论