




免费预览已结束,剩余13页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省郑州市2014-2015学年高二下学期期末数学试卷(理科)一、选择题 1(5分)已知i是虚数单位,则复数z=在复平面内对应的点所在的象限为()a第一象限b第二象限c第三象限d第四象限2(5分)设xn(500,602),p(x440)=0.16,则p(x560)=()a0.16b0.32c0.84d0.643(5分)用反证法证明命题“自然数a,b,c,中恰有一个偶数”时,需假设()aa,b,c都是奇数ba,b,c都是偶数ca,b,c都是奇数或至少有两个偶数da,b,c至少有两个偶数4(5分)如图,函数y=f(x)的图象在点p处的切线方程是y=x+8,则f(5)+f(5)=()ab1c2d05(5分)某餐厅的原料费支出x与销售额y(单位:万元)之间有如下数据,根据表中提供的全部数据,用最小二乘法得出y与x的线性回归方程为=8.5x+7.5,则表中的m的值为() x24568y2535m5575a50b55c60d656(5分)若函数f(x)=,则f(x)是()a仅有最小值的奇函数b仅有最大值的偶函数c既有最大值又有最小值的偶函数d非奇非偶函数7(5分)由曲线y=,直线y=x2及y轴所围成的图形的面积为()ab4cd68(5分)函数f(x)=x33x+1在闭区间3,0上的最大值、最小值分别是()a1,1b1,17c3,17d9,199(5分)某班级要从4名男士、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为()a14b24c28d4810(5分)设f(x)是函数f(x)的导函数,将y=f(x)和y=f(x)的图象画在同一个直角坐标系中,不可能正确的是()abcd11(5分)口袋里放有大小相同的2个红球和1个白球,有放回的每次摸取一个球,定义数列an:,如果sn为数列an的前n项之和,那么s7=3的概率为()abcd12(5分)若函数f(x)=x3+ax2+bx+c有极值点x1,x2,且f(x1)=x1,则关于x的方程3(f(x)2+2af(x)+b=0的不同实根个数是()a3b4c5d6二、填空题13(5分)的展开式中x3的系数是14(5分)设是一个离散型随机变量,其概率分布列如下:101p0.5q2则q=15(5分)设a、b为两个事件,若事件a和b同时发生的概率为,在事件a发生的条件下,事件b发生的概率为,则事件a发生的概率为16(5分)设面积为s的平面四边形的第i条边的边长为ai(i=1,2,3,4),p是该四边形内一点,点p到第i条边的距离记为,类比上述结论,体积为v的三棱锥的第i个面的面积记为si(i=1,2,3,4),q是该三棱锥内的一点,点q到第i个面的距离记为di,若等于三、解答题17(10分)设复数z=,若z2+az+b=1+i,求实数a,b的值18(12分)已知(nn*)的展开式中第五项的系数与第三项的系数的比是10:1(1)求展开式中各项系数的和; (2)求展开式中含的项19(12分)某市随机抽取一年(365天)内100天的空气质量指数api的监测数据,结果统计如下:api0,50(50,100(100,150(150,200(200,250(250,300300空气质量优良轻微污染轻度污染中度污染中度重污染重度污染天数413183091115记某企业每天由于空气污染造成的经济损失为s(单位:元),空气质量指数api为,在区间0,100对企业没有造成经济损失;在区间(100,300对企业造成经济损失成直线模型(当api为150时造成的经济损失为500元,当api为200时,造成的经济损失为700元);当api大于300时造成的经济损失为2000元(1)试写出s()表达式;(2)试估计在本年内随机抽取一天,该天经济损失s大于500元且不超过900元的概率;(3)若本次抽取的样本数据有30天是在供暖季,其中有8天为重度污染,完成下面22列联表,并判断能否有95%的把握认为该市本年空气重度污染与供暖有关?p(k2kc)0.250.150.100.050.0250.0100.0050.001kc1.3232.0722.7063.8415.0246.6357.87910.828k2=非重度污染重度污染合计供暖季非供暖季合计10020(12分)学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖(每次游戏结束后将球放回原箱)()求在1次游戏中获奖的概率;()求在2次游戏中获奖次数x的分布列及数学期望e(x)21(12分)当nn*时,tn=+()求s1,s2,t1,t2;()猜想sn与tn的关系,并用数学归纳法证明22(12分)已知函数f(x)=lnx+x2()求h(x)=f(x)3x的极值;()若函数g(x)=f(x)ax在定义域内为增函数,求实数a的取值范围;()设f(x)=2f(x)3x2k,kr,若函数f(x)存在两个零点m,n(0mn),且满足2x0=m+n,问:函数f(x)在(x0,f(x0)处的切线能否平行于x轴?若能,求出该切线方程,若不能,请说明理由河南省郑州市2014-2015学年高二下学期期末数学试卷(理科)参考答案与试题解析一、选择题1(5分)已知i是虚数单位,则复数z=在复平面内对应的点所在的象限为()a第一象限b第二象限c第三象限d第四象限考点:复数代数形式的乘除运算 专题:数系的扩充和复数分析:利用复数的运算法则及其几何意义即可得出解答:解:复数z=在复平面内对应的点所在的象限为第四象限故选:d点评:本题考查了复数的运算法则及其几何意义,属于基础题2(5分)设xn(500,602),p(x440)=0.16,则p(x560)=()a0.16b0.32c0.84d0.64考点:正态分布曲线的特点及曲线所表示的意义 分析:利用正态分布的对称性即可得出解答:解:=500,2=602,即 =60 根据正态分布的对称性p(x3)=p(x3)=0.16故选a点评:正确理解正态分布的对称性是解题的关键3( 5分)用反证法证明命题“自然数a,b,c,中恰有一个偶数”时,需假设()aa,b,c都是奇数ba,b,c都是偶数ca,b,c都是奇数或至少有两个偶数da,b,c至少有两个偶数考点:反证法 专题:推理和证明分析:直接利用反证法的定义,写出结果即可解答:解:用反证法证明命题“自然数a,b,c,中恰有一个偶数”时,需假设:a,b,c都是奇数或至少有两个偶数故选:c点评:本题考查反证法的定义,利用反证法证明命题的步骤,基本知识的考查4(5分)如图,函数y=f(x)的图象在点p处的切线方程是y=x+8,则f(5)+f(5)=()ab1c2d0考点:导数的运算 专题:导数的概念及应用分析:利用函数在切点处的导数值是切线的斜率求出f(5),将切点坐标代入切线方程求出f(5)解答:解:f(5)=1将x=5代入切线方程得f(5)=5+8=3,所以f(5)+f(5)=3+(1)=2,故选:c点评:本题考查导数的几何意义:函数在切点处的导数值是切线的斜率5(5分)某餐厅的原料费支出x与销售额y(单位:万元)之间有如下数据,根据表中提供的全部数据,用最小二乘法得出y与x的线性回归方程为=8.5x+7.5,则表中的m的值为() x24568y2535m5575a50b55c60d65考点:线性回归方程 专题:应用题;概率与统计分析:计算样本中心点,根据线性回归方程恒过样本中心点,列出方程,求解即可得到结论解答:解:由题意,=5,=38+,y关于x的线性回归方程为=8.5x+7.5,根据线性回归方程必过样本的中心,38+=8.55+7.5,m=60故选:c点评:本题考查线性回归方程的运用,解题的关键是利用线性回归方程恒过样本中心点,这是线性回归方程中最常考的知识点属于基础题6(5分)若函数f(x)=,则f(x)是()a仅有最小值的奇函数b仅有最大值的偶函数c既有最大值又有最小值的偶函数d非奇非偶函数考点:简单复合函数的导数 专题:导数的概念及应用分析:先求导,转化为二次函数型的函数并利用三角函数的单调性求其最值,再利用函数的奇偶性的定义进行判断其奇偶性即可解答:解:函数f(x)=,f(x)=cos2x+cosx=2cos2x+cosx1=,当cosx=时,f(x)取得最小值;当cosx=1时,f(x)取得最大值2且f(x)=f(x)即f(x)是既有最大值,又有最小值的偶函数故选c点评:熟练掌握复合函数的导数、二次函数型的函数的最值、三角函数的单调性及函数的奇偶性是解题的关键7(5分)由曲线y=,直线y=x2及y轴所围成的图形的面积为()ab4cd6考点:定积分在求面积中的应用 专题:计算题分析:利用定积分知识求解该区域面积是解决本题的关键,要确定出曲线y=,直线y=x2的交点,确定出积分区间和被积函数,利用导数和积分的关系完成本题的求解解答:解:联立方程得到两曲线的交点(4,2),因此曲线y=,直线y=x2及y轴所围成的图形的面积为:s=故选c点评:本题考查曲边图形面积的计算问题,考查学生分析问题解决问题的能力和意识,考查学生的转化与化归能力和运算能力,考查学生对定积分与导数的联系的认识,求定积分关键要找准被积函数的原函数,属于定积分的简单应用问题8(5分)函数f(x)=x33x+1在闭区间3,0上的最大值、最小值分别是()a1,1b1,17c3,17d9,19考点:函数的最值及其几何意义 专题:计算题分析:求导,用导研究函数f(x)=x33x+1在闭区间3,0上的单调性,利用单调性求函数的最值解答:解:f(x)=3x23=0,x=1,故函数f(x)=x33x+13,1上是增函数,在1,0上是减函数又f(3)=17,f(0)=1,f(1)=1,f(1)=3故最大值、最小值分别为3,17;故选c点评:本题考点是导数法求函数最值此类解法的步骤是求导,确定极值点,研究单调性,求出极值与区间端点的函数值,再比较各数的大小,选出最大值与最小值9(5分)某班级要从4名男士、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为()a14b24c28d48考点:排列、组合的实际应用 专题:计算题;转化思想分析:法一:用直接法,4人中至少有1名女生包括1女3男及2女2男两种情况,计算各种情况下的选派方案种数,由加法原理,计算可得答案;法二:用排除法,首先计算从4男2女中选4人的选派方案种数,再计算4名都是男生的选派方案种数,由排除法,计算可得答案解答:解:法一:4人中至少有1名女生包括1女3男及2女2男两种情况,故不同的选派方案种数为c12c34+c22c24=24+16=14;法二:从4男2女中选4人共有c46种选法,4名都是男生的选法有c44种,故至少有1名女生的选派方案种数为c46c44=151=14故选a点评:本题考查简单的排列组合,建议如果分类讨论太复杂的题目最好用间接法即排除法,以避免直接的分类不全情况出现10(5分)设f(x)是函数f(x)的导函数,将y=f(x)和y=f(x)的图象画在同一个直角坐标系中,不可能正确的是()abcd考点:利用导数研究函数的单调性;导数的几何意义 专题:压轴题分析:本题可以考虑排除法,容易看出选项d不正确,因为d的图象,在整个定义域内,不具有单调性,但y=f(x)和y=f(x)在整个定义域内具有完全相同的走势,不具有这样的函数解答:解析:检验易知a、b、c均适合,不存在选项d的图象所对应的函数,在整个定义域内,不具有单调性,但y=f(x)和y=f(x)在整个定义域内具有完全相同的走势,不具有这样的函数,故选d点评:考查函数的单调性问题11(5分)口袋里放有大小相同的2个红球和1个白球,有放回的每次摸取一个球,定义数列an:,如果sn为数列an的前n项之和,那么s7=3的概率为()abcd考点:等可能事件的概率 专题:常规题型;概率与统计分析:s7=3说明共摸球七次,只有两次摸到红球,由于每次摸球的结果数之间没有影响,故可以用独立事件的概率乘法公式求解解答:解:由题意s7=3说明共摸球七次,只有两次摸到红球,因为每次摸球的结果数之间没有影响,摸到红球的概率是,摸到白球的概率是所以只有两次摸到红球的概率是=故选b点评:本题考查独立事件的概率乘法公式,考查学生分析解决问题的能力,确定s7=3说明共摸球七次,只有两次摸到红球是关键12(5分)若函数f(x)=x3+ax2+bx+c有极值点x1,x2,且f(x1)=x1,则关于x的方程3(f(x)2+2af(x)+b=0的不同实根个数是()a3b4c5d6考点:函数在某点取得极值的条件;根的存在性及根的个数判断 专题:综合题;压轴题;导数的综合应用分析:求导数f(x),由题意知x1,x2是方程3x2+2ax+b=0的两根,从而关于f(x)的方程3(f(x)2+2af(x)+b=0有两个根,作出草图,由图象可得答案解答:解:f(x)=3x2+2ax+b,x1,x2是方程3x2+2ax+b=0的两根,不妨设x2x1,由3(f(x)2+2af(x)+b=0,则有两个f(x)使等式成立,x1=f(x1),x2x1=f(x1),如下示意图象:如图有三个交点,故选a点评:考查函数零点的概念、以及对嵌套型函数的理解,考查数形结合思想二、填空题13(5分)的展开式中x3的系数是24考点:二项式系数的性质 专题:计算题分析:求出的通项公式为 tr+1=,令 ,求出r的值,即可求得x3的系数解答:解:由于的展开式的通项公式为 tr+1=,令,解得 r=2,故 t4=24 x3,故展开式中x3的系数是24,故答案为:24点评:本题考查二项展开式的通项公式,求展开式中某项的系数,二项式系数的性质,求出通项公式为 tr+1=,是解题的关键,属于中档题14(5分)设是一个离散型随机变量,其概率分布列如下:101p0.5q2则q=考点:离散型随机变量及其分布列 专题:计算题;阅读型分析:根据随机变量的概率非负不大于1,且随机变量取遍所有可能值时相应的概率之和等于1,列出方程和不等式,解方程组即可解答:解:因为随机变量的概率非负且随机变量取遍所有可能值时相应的概率之和等于1,0.5+1q+q2=1 01q1 q21解一元二次方程得q=或1,而1代入不合题意,舍去,故答案为:点评:本题主要考查了分布列的简单应用,通过解方程组得到要求的变量,这与求变量的分布列是一个相反的过程,但是两者都要用到分布列的性质,属于中档题15(5分)设a、b为两个事件,若事件a和b同时发生的概率为,在事件a发生的条件下,事件b发生的概率为,则事件a发生的概率为考点:条件概率与独立事件 专题:计算题;概率与统计分析:根据题意,结合条件概率公式加以计算即可得到事件a发生的概率解答:解:根据题意,得p(a|b)=,p(ab)=,p(a|b)=,解得p(b)=故答案为:点评:本题给出事件a、b同时发生的概率和a发生的条件下b发生的概率,求事件a的概率,着重考查了条件概率及其应用的知识,属于基础题16(5分)设面积为s的平面四边形的第i条边的边长为ai(i=1,2,3,4),p是该四边形内一点,点p到第i条边的距离记为,类比上述结论,体积为v的三棱锥的第i个面的面积记为si(i=1,2,3,4),q是该三棱锥内的一点,点q到第i个面的距离记为di,若等于考点:类比推理 专题:计算题分析:由 可得ai=ik,p是该四边形内任意一点,将p与四边形的四个定点连接,得四个小三角形,四个小三角形面积之和为四边形面积,即采用分割法求面积;同理对三棱值得体积可分割为5个已知底面积和高的小棱锥求体积解答:解:根据三棱锥的体积公式 得:,即s1h1+2s2h2+3s3h3+4s4h4=3v,即 故答案为:点评:本题主要考查三棱锥的体积计算和运用类比思想进行推理的能力解题的关键是理解类比推理的意义,掌握类比推理的方法平面几何的许多结论,可以通过类比的方法,得到立体几何中相应的结论当然,类比得到的结论是否正确,则是需要通过证明才能加以肯定的三、解答题17(10分)设复数z=,若z2+az+b=1+i,求实数a,b的值考点:复数代数形式的混合运算;复数的基本概念 专题:计算题分析:先将z按照复数代数形式的运算法则,化为代数形式,代入 z2+az+b=1+i,再根据复数相等的概念,列出关于a,b的方程组,并解即可解答:解:z=1iz2+az+b=(1i)2+a(1i)+b=a+b(a+2)i=1+i解得点评:本题考查了复数代数形式的混合运算,复数相等的概念,属于基础题18(12分)已知(nn*)的展开式中第五项的系数与第三项的系数的比是10:1(1)求展开式中各项系数的和; (2)求展开式中含的项考点:二项式系数的性质 专题:计算题分析:(1)利用二项展开式的通项公式求出二项展开式的通项,求出第五项的系数与第三项的系数,根据已知条件列出方程,求出n的值,将n的值代入二项式,给二项式中的x赋值1,求出展开式中各项系数的和(2)令二项展开式的通项中的x的指数为,求出r的值,将r的值代入通项求出展开式中含的项解答:解:由题意知,展开式的通项为则第五项系数为cn4(2)4,第三项的系数为cn2(2)2则有,化简,得n25n24=0解得n=8或n=3(舍去) (1)令x=1,得各项系数的和为(12)8=1 (2)令,则r=1故展开式中含的项为点评:求二项展开式的特定项问题一般借助的工具是二项展开式的通项公式;求二项展开式的各项系数和问题,一般通过观察,通过赋值的方法来解决19(12分)某市随机抽取一年(365天)内100天的空气质量指数api的监测数据,结果统计如下:api0,50(50,100(100,150(150,200(200,250(250,300300空气质量优良轻微污染轻度污染中度污染中度重污染重度污染天数413183091115记某企业每天由于空气污染造成的经济损失为s(单位:元),空气质量指数api为,在区间0,100对企业没有造成经济损失;在区间(100,300对企业造成经济损失成直线模型(当api为150时造成的经济损失为500元,当api为200时,造成的经济损失为700元);当api大于300时造成的经济损失为2000元(1)试写出s()表达式;(2)试估计在本年内随机抽取一天,该天经济损失s大于500元且不超过900元的概率;(3)若本次抽取的样本数据有30天是在供暖季,其中有8天为重度污染,完成下面22列联表,并判断能否有95%的把握认为该市本年空气重度污染与供暖有关?p(k2kc)0.250.150.100.050.0250.0100.0050.001kc1.3232.0722.7063.8415.0246.6357.87910.828k2=非重度污染重度污染合计供暖季非供暖季合计100考点:独立性检验 专题:综合题;概率与统计分析:(1)根据在区间0,100对企业没有造成经济损失;在区间(100,300对企业造成经济损失成直线模型(当api为150时造成的经济损失为500元,当api为200时,造成的经济损失为700元);当api大于300时造成的经济损失为2000元,可得函数关系式;(2)由500s900,得150250,频数为39,即可求出概率;(3)根据所给的数据,列出列联表,根据所给的观测值的公式,代入数据做出观测值,同临界值进行比较,即可得出结论解答:解:(1)根据在区间0,100对企业没有造成经济损失;在区间(100,300对企业造成经济损失成直线模型(当api为150时造成的经济损失为500元,当api为200时,造成的经济损失为700元);当api大于300时造成的经济损失为2000元,可得s()=;(2)设“在本年内随机抽取一天,该天经济损失s大于500元且不超过900元”为事件a;由500s900,得150250,频数为39,p(a)=;(2)根据以上数据得到如表:非重度污染重度污染合计供暖季22830非供暖季63770合计8515100k2的观测值k2=4.5753.841所以有95%的把握认为空气重度污染与供暖有关点评:本题考查概率知识,考查列联表,观测值的求法,是一个独立性检验,我们可以利用临界值的大小来决定是否拒绝原来的统计假设,若值较大就拒绝假设,即拒绝两个事件无关20(12分)学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖(每次游戏结束后将球放回原箱)()求在1次游戏中获奖的概率;()求在2次游戏中获奖次数x的分布列及数学期望e(x)考点:离散型随机变量的期望与方差;古典概型及其概率计算公式 专题:计算题;概率与统计分析:(i)设“在x次游戏中摸出i个白球”为事件ai(i=,0,1,2,3),“在1次游戏中获奖”为事件b,则b=a2a3,求出相应的概率,再相加即可求得结果;(ii)在2次游戏中获奖次数x的取值是0、1、2,根据上面的结果,代入公式得到结果,写出分布列,求出数学期望解答:(i)解:设“在x次游戏中摸出i个白球”为事件ai(i=,0,1,2,3),“在1次游戏中获奖”为事件b,则b=a2a3,又p(a3)=,p(a2)=,且a2,a3互斥,所以p(b)=p(a2)+p(a3)=+=;(ii)解:由题意可知x的所有可能取值为0,1,2.所以x的分布列是x012px的数学期望e(x)=0+1+2=点评:本题考查古典概型及共概率计算公式,离散型随机变量的分布列数学期望、互斥事件和相互独立事件等基础知识,考查运用概率知识解决实际问题的能力21(12分)当nn*时,tn=+()求s1,s2,t1,t2;()猜想sn与tn的关系,并用数学归纳法证明考点:数学归纳法;数列的求和 专题:点列、递归数列与数学归纳法分析:()由已知直接利用n=1,2,求出s1,s2,t1,t2的值;()利用(1)的结果,直接猜想sn=tn,然后利用数学归纳法证明,验证n=1时猜想成立;假设n=k时,sk=tk,通过假设证明n=k+1时猜想也成立即可解答:解:()当nn*时,tn=+s1=1=,s2=1+=,t1=,t2=+=(2分)()猜想:sn=tn(nn*),即:1+=+(nn*)(5分)下面用数学归纳法证明:当n=1时,已证s1=t1(6分)假设n=k时,sk=tk(k1,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五商铺租赁转让合同书范文
- 上海工商股权转让协议二零二五年
- 民俗文化节庆活动行业深度调研及发展战略咨询报告
- 美甲艺术培训课程行业跨境出海战略研究报告
- 电商产品数字展示设计行业深度调研及发展战略咨询报告
- 碳铵颗粒肥料生产企业制定与实施新质生产力战略研究报告
- 法规咨询与注册服务企业制定与实施新质生产力战略研究报告
- 房地产开发合资协议合同范例二零二五年
- 建筑能耗监测行业跨境出海战略研究报告
- 碳交易法律服务行业深度调研及发展战略咨询报告
- 云南省昆明市云南民族大学附属中学2025届高三下第一次测试物理试题含解析
- 中建八局建筑工程安全施工创优策划范本
- DL∕T 2617-2023 20kV配电线路带电作业技术规范
- 2023年考研数学三真题及答案
- 一年级下册口算题卡大全(50套直接打印版)
- 医院公共卫生管理制度
- 2024年版-生产作业指导书SOP模板
- DL-T5508-2015燃气分布式供能站设计规范
- 汽车吊装专项施工方案及流程
- 2024年安徽省合肥市新站区中考一模数学试题
- 智联招聘测评题库2024答案
评论
0/150
提交评论