![电子束发生原理.doc_第1页](http://file.renrendoc.com/FileRoot1/2020-1/16/03616e62-a06c-4950-bf9e-d8799acda458/03616e62-a06c-4950-bf9e-d8799acda4581.gif)
![电子束发生原理.doc_第2页](http://file.renrendoc.com/FileRoot1/2020-1/16/03616e62-a06c-4950-bf9e-d8799acda458/03616e62-a06c-4950-bf9e-d8799acda4582.gif)
![电子束发生原理.doc_第3页](http://file.renrendoc.com/FileRoot1/2020-1/16/03616e62-a06c-4950-bf9e-d8799acda458/03616e62-a06c-4950-bf9e-d8799acda4583.gif)
![电子束发生原理.doc_第4页](http://file.renrendoc.com/FileRoot1/2020-1/16/03616e62-a06c-4950-bf9e-d8799acda458/03616e62-a06c-4950-bf9e-d8799acda4584.gif)
![电子束发生原理.doc_第5页](http://file.renrendoc.com/FileRoot1/2020-1/16/03616e62-a06c-4950-bf9e-d8799acda458/03616e62-a06c-4950-bf9e-d8799acda4585.gif)
免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
束流强度达几十万以至上百万安培的束流。它比通常加速器的束流密度高几万倍以至几十万倍。20世纪60年代初期,由于模拟核爆炸条件下射线辐照效应和X射线照相的需要,强流脉冲电子束加速器得到了迅速发展,70年代后,由于粒子束惯性约束聚变、电子束抽运气体激光器、电子束产生高功率微波等研究工作的要求,研制了低电压大电流的电子束加速器,并在这些技术的基础上获得了强流脉冲离子束。1984年已能产生1MeV、1MA的轻离子束,强流脉冲电子束也达到了如下的技术水平: 电子能量 0.3MeV12MeV 电子束流 10kA5MA 脉冲宽度 10ns100ns 总束能 1kJ5MJ 功率 1011W31013W 这些束流之特点是束流能量大、功率高、电流大、时间宽度窄。这种基于物理学和电工学相结合的高功率脉冲技术是一门新的前沿科学技术,近年来发展极为迅速,已成为研究高温高压等离子体物理的重要工具,它在经济和军事应用方面有着广阔的前景。 强流脉冲电子束的产生 强流脉冲电子束加速器主要由三个部分组成,即冲击电压发生器、脉冲成形线与脉冲传输线和场致发射二极管。从冲击电压发生器输出的微秒级上升时间的高压脉冲经脉冲成形线成形为几十纳(10-9)秒上升时间的高压脉冲,并由传输线输运至场致发射二极管,二极管起着将电磁能转变为电子束的能量的作用。 冲击电压发生器 见脉冲倍压发生器之图2。冲击电压发生器的工作原理是对电容器组并联充电串联放电,获得脉冲高压输出,减小冲击电压发生器电感,可缩短输出高压脉冲的上升时间。电容器的排列有Z型、S型和混合型等,采取正、负充电线路,可使火花球隙数目减少一倍。 LC反转冲击电压发生器的电感小,输出脉冲上升时间短,但当所有球隙不能在同一时间内击穿时,过电压会把电容器击穿。 脉冲成形线和脉冲传输线 如图1所示。冲击电压发生器输出的电压脉冲,对脉冲成形线充电,当电压充至一定值时主开关接通,成形线中开始了波过程,经过时间在成形线末端产生时间宽度为的高压脉冲加在场致发射二极管上。L为成形线长度,为光速,为成形线介质的介电常数,也可以通过变阻抗传输线加到二极管上,以达到升压或降压的目的。脉冲成形线和脉冲传输线中充以去离子水或变压器油,对于亚微秒充电时间的高压脉冲,水是很好的绝缘介质,水的储能密度大、价廉,发生电击穿后能很快恢复不留痕迹。可根据T.H.马丁的经验公式来考虑脉冲成形线和脉冲传输线的绝缘要求。 强流电子束二极管 阴极表面细微的针尖状结构,使场强增大约100倍,趋于108V/cm,由此引起的电流的增强造成阴极上微小尖端的蒸发,蒸发物的电离形成阴极等离子体,并从中发射电流,阴极等离子体的前沿以14104m/s的速度向阳极运动,随着束流的增强,在阳极上吸附的气体释放出来并被电离,形成阳极等离子体,它以约1104m/s的速度向阴极运动。 描述二极管中电子束流特性的一个重要物理量是v/ 值,v是单位长度上电子数目乘电子经典半径,IA称为阿尔文电流。 低v/ 值二极管阻抗可由蔡尔德朗缪尔公式描述,平行板二极管阻抗为 式中V以兆伏为单位,R是二极管半径,d是阴阳极间隙距离,以厘米为单位, 是阴极等离子体运动速度,以厘米秒为单位,Z以欧姆为单位,K(V)是随着V而增长的函数,对于非相对论性束流K(V)136。 当二极管中电流超过了临界电流值时,电子轨迹开始箍缩,这时电子的拉莫尔半径等于电子束半径的一半,并等于阴阳极之间的间距。 在高v/ 值的二极管中,当达到临界电流值时,束流开始箍缩,实验观察到箍缩主要在脉冲的后一段时间内形成,并以(15)106m/s的径向崩塌速度进行,它比等离子体膨胀速率大一个半到二个数量级,这是由于阳极等离子体中的正离子向阴极运动,改变了空间电荷分布,增大了二极管电流,从而使箍缩进一步发展。 箍缩发生后,二极管阻抗大致和顺位流模型的计算值相符。箍缩的结果使电子向二极管的轴线方向移动。由于空间电荷的堆积,造成阴极中心部分轴向电场的减小,从而降低了阴极中心区域的电子发射,过剩的空间电荷使得等位面分布接近锥形。电子沿锥形等位面运动。等位面的法线方向和磁场方向垂直。因而向外的电场力和向内的自磁场力方向相反。空间电荷堆积一直继续到作用在电子上的净力为零。于是从阴极边界处发出的电子沿等位面作净力为零的运动。按顺位流模型可得 进一步考虑阴极和阳极表面上存在的等离子体对箍缩所起的作用,建立了聚焦流模型,按照该模型聚焦束流为 强流离子束的产生 在双极性流的情况下,质子流和电子流密度满足方程 式中x是阴阳极之间距离,V是阴阳极间隙上的电压,o是空气介电常数,e是电子电荷,mp是质子质量。电子流密度约为质子流密度的43倍,强流离子二极管的工作原理是利用电场或磁场抑制电子到达阳极,使二极管的能量大部分为离子所带走,现有的离子二极管有三种类型: 反射型二极管 从阴极射出的电子穿过薄阳极靶后,遇到一个反向电场,使电子减速并回转,重新穿过阳极靶,然后阴阳极之间的电场又将电子拉向阳极。若靶上涂以某种有机物,由于电子来回穿过阳极靶,在靶上产生离子并向阴极运动(图2)。反射型二极管产生离子效率可达50,实际上不需要第二个阴极,从阳极穿出的电子的堆积,形成虚阴极。离子流密度和电子流密度之比为 式中Zm是离子的电荷,Mp是离子质量,2是散射角的均方值,散射角近似反比于二极管电压的二次方,离子流密度和二极管电压的关系可用7/2次方来描述。 磁绝缘二极管 如图3所示。外加一个大于临界磁场Bcr的横向磁场,偏转电子,使它不能到达阳极。 式中V是阴阳极之间电压,d是阴阳极间距。将含氢的有机物薄层附在阳极板上,采用表面闪络的技术使有机物层产生电击穿,形成等离子体,并从中发射出质子,质子从阳极向阴极运动的偏转角,Bcr为实际磁场强度,Bcr是达到磁绝缘所必须的最小磁场强度,一般的偏转角为12。 磁绝缘二极管的优点是在每次放电中阳极不会被损坏,约75的二极管能量可以为离子带走,在美国桑迪亚国家实验室Proto-I加速器上获得能量为0.81.4MeV,电流为360kA的质子束。 自箍缩型二极管 如图4所示。阴极是大纵横比的圆环,阳极为一平板,从阴极发出的电子呈圆环的形状,电子轰击在阳极上形成阳极等离子体,它以约10%m/s的速度向阴极运动,走在前头的离子流使电子的空间电荷中性化,因而促使电子流增长,当电子流超过了临界电流时箍缩开始,在电子束每一次箍缩的过程中,有更多的等离子体从阳极放出,离子从等离子体中发出向阴极运动,电子束继续箍缩,从阴极圆环到二极管轴,走了一条弯曲而长的路程,而离子从阳极至阴极却走了一条比较直的路程,离子流和电子流之比为 式中vcr和vp是平均电子和离子的速度。 束流的传输 瑞典物理学家H.阿尔文研究宇宙射线时指出,带电高能粒子通过星际空间时的电流极限,星际空间的物质认为是电离的良好导体,其中电场为零,束流粒子的运动主要取决于束流本身所产生的磁场,可传输束流的最大值IA称为阿尔文电流 但由于本底气体的电离,造成空间电荷中性化和本底电离气体中的逆电流中和电流磁场的结果,可传输的束流往往超过阿尔文电流值。 均匀电子束流,在部分空间电荷中性化时,可传输的最大束流,ni是单位时间内单位体积中产生的离子数,nb是单位时间内通过单位面积上的带电粒子数。又由于电子束流上升前沿产生的随时间变化的角向磁场Bcr(t),而感生的轴向电场Ez(t),会产生逆向电流Jr(t)Ez(t),为电离的本底气体的电导率,逆向电流可抵消原束流的磁场,起磁中和的作用,这时可传输的最大束流 fmJr/Jb称磁中和因子,表示磁场被中和的程度。 同时考虑到电中和和磁中和时,最大传输束流 电子束在传输中束截面变化的情况,可用径向运动方程表示, ,n值的正负决定了束流截面变化的行为。 W.T.林克曾分析在各种不同气压的空气中电子束的传输特性,如下表所示。 离子束通过稀薄气体的漂移管,气体被电离产生的电子可以中和离子的空间电荷。在等离子体密度足够大、电导率足够高的等离子体通道中,可传输高流强的离子束,传输距离达几米时,能量损失很小,用大型电容器组通过细钨丝放电,在气体中形成狭窄的等离子体通道,放电电流的角向磁场可使离子束或电子束箍缩住,全息照相技术观察,发现在均匀稳定的低密度通路外面,是一层温度较低、密度较高的圆筒状气体壳。等离子体通道方法有效地将几十万安培的强流电子束或离子束传输了几米。近来也用激光产生的弱的预电离通道来传输粒子束流。 强流电子束和离子束的应用 强流粒子束已广泛地应用于核爆炸模拟、大型 X闪光机照相、强功率微波的产生、强中子源的产生、粒子束惯性约束聚变的研究、抽运高功率的气体激光器(其中以准分子激光器、二氧化碳激光器和化学激光器在最近几年得到迅速发展),现只叙述在粒子束惯性约束聚变方面的应用。 强流粒子束射在球形的靶丸上,靶的结构包括三个部分:烧蚀层。即靶壳的外层部分,绝大部分的束流能量在该层吸收,形成高温高压的等离子体;推进层。即靶壳的内层部分,当烧蚀层的高温高压等离子体向外膨胀喷射时,靶壳的内层部分向内作聚心压缩;燃料。即DT混合物,由于推进层的压缩,将燃料加热和点燃。 粒子束惯性约束聚变研究中最关键的问题是增大在靶面上粒子束流的功率密度和粒子束在靶上的能量沉积,1976年苏联库尔恰托夫研究所.鲁达科夫等首次用功率约1011瓦的电子束辐照锥形靶,压缩
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 美团外卖活动策划方案
- 医疗器械公司劳动合同
- 庭院绿化施工合同
- 高效办公工具使用解决方案
- 环保产业技术创新与应用合作协议
- 地产项目土地开发合作合同
- 个人分包劳务分包合同
- 新兴技术交流及应用方案推进工作指引
- 医疗行业智能化诊断系统构建方案
- 战略合作合同协议
- 12月腹痛护理常规
- 控股集团公司组织架构图.docx
- DB11_T1713-2020 城市综合管廊工程资料管理规程
- 最常用2000个英语单词_(全部标有注释)字母排序
- 气管套管滑脱急救知识分享
- 特种设备自检自查表
- 省政府审批单独选址项目用地市级审查报告文本格式
- 往复式压缩机安装方案
- 汉字的演变甲骨文PPT课件
- 在银行大零售业务工作会议上的讲话讲解学习
- 古代传说中的艺术形象-
评论
0/150
提交评论