高中数学 2.5 离散型随机变量的均值与方差(第2课时)离散型随机变量的方差与标准差(二)教案 苏教版选修23.doc_第1页
高中数学 2.5 离散型随机变量的均值与方差(第2课时)离散型随机变量的方差与标准差(二)教案 苏教版选修23.doc_第2页
高中数学 2.5 离散型随机变量的均值与方差(第2课时)离散型随机变量的方差与标准差(二)教案 苏教版选修23.doc_第3页
高中数学 2.5 离散型随机变量的均值与方差(第2课时)离散型随机变量的方差与标准差(二)教案 苏教版选修23.doc_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2.5.2离散型随机变量的均值和方差(二)教学目标1进一步理解均值与方差都是随机变量的数字特征,通过它们可以刻划总体水平;2会求均值与方差,并能解决有关应用题教学重点:会求均值与方差,并能解决有关应用题教学难点:解决应用题教学过程一、自学导航复习回顾:1离散型随机变量的均值、方差、标准差的概念和意义,以及计算公式2练习设随机变量,且,则 , ;答案:二、例题精讲例1 有同寝室的四位同学分别写一张贺年卡,先集中起来,然后每人去拿一张,记自己拿自己写的贺年卡的人数为(1)求随机变量的概率分布;(2)求的数学期望和方差解:(1),因此的分布列为01234(2),例2 有甲、乙两种品牌的手表,它们日走时误差分别为(单位:),其分布如下:比较两种品牌手表的质量分析:期望与方差结合能解决实际应用中质量好坏、产品质量高低等问题特别是期望相等时,可在看方差本题只要分别求出两种品牌手表日走时误差的期望和方差,然后通过数值的大小进行比较解:,所以 ,所以由期望值难以判断质量的好坏又因为 所以,可见乙的波动性大,甲的稳定性强,故甲的质量高于乙例3 某城市有甲、乙、丙3个旅游景点,一位客人游览这三个景点的概率分别是,且客人是否游览哪个景点互不影响,设表示客人离开该城市时游览的景点数与没有游览的景点数之差的绝对值求的分布列及数学期望;记“函数在区间上单调递增”为事件,求事件的概率.分析:(2)这是二次函数在闭区间上的单调性问题,需考查对称轴相对闭区间的关系,就本题而言,只需即可解:(1)分别记“客人游览甲景点”,“客人游览乙景点”,“客人游览丙景点”为事件 由已知相互独立,.客人游览的景点数的可能取值为0,1,2,3. 相应的,客人没有游览的景点数的可能取值为3,2,1,0,所以的可能取值为1,3 13所以的分布列为解法一:因为所以函数上单调递增,要使上单调递增,当且仅当从而解法二:的可能取值为1,3.当时,函数上单调递增,当时,函数上不单调递增.所以例4 有一庄家为吸引顾客玩掷骰子游戏,以便自己轻松获利,以海报形式贴出游戏规则:顾客免费掷两枚骰子,把掷出的点数相加,如果得2或12,顾客中将30元;如果得3或11,顾客中将20元;如果得4或10,顾客中将10元;如果得5或9,顾客应付庄家10元;如果得6或8,顾客应付庄家20元;如果得7,顾客应付庄家30元试用数学知识解释其中的道理解:设庄家获利的数额为随机变量,根据两枚骰子的点数之和可能的结果以及游戏规则可得随机变量的概率分布为:所以 因此,顾客每玩36人次,庄家可获利约260元,但不确定顾客每玩36人次一定会有些利润;长期而言,庄家获利的均值是这一常数,也就是说庄家一定是赢家三、课堂精练四、回顾小结1已知随机变量的分布列,求它的期望、方差和标准差,可直接按定义(公式)求解;2如能分析所给随机变量,是服从常见的分布(如两点分布、二项分布、超几何分布等),可直接用它们的期望、方差公式计算;3对于应用题,必须对实际问题进行具体

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论