已阅读5页,还剩27页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2016-2017学年安徽省合肥市瑶海区九年级(上)期末数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)以下每小题都给出了A,B,C,D四个选项,其中只有一个是正确的,请把正确答案的代号填在表中1抛物线y=ax2+bx3经过点(1,1),则代数式a+b的值为()A2B3C4D62在RtABC中,C=90,AB=5,AC=3下列选项中,正确的是()AsinA=BcosA=CtanA=DcotA=3若ab=cd,且abcd0,则下列式子正确的是()Aa:c=b:dBd:c=b:aCa:b=c:dDa:d=c:b4对于反比例函数,下列说法中不正确的是()A点(2,1)在它的图象上B它的图象在第一、三象限Cy随x的增大而减小D当x0时,y随x的增大而减小5如图,ABC中,点D、E分别是AB、AC的中点,则下列结论:BC=2DE;ADEABC;其中正确的有()A3个B2个C1个D0个6AB为O的直径,点C、D在O上若ABD=42,则BCD的度数是()A122B132C128D1387已知点C在线段AB上,且点C是线段AB的黄金分割点(ACBC),则下列结论正确的是()AAB2=ACBCBBC2=ACBCCAC=BCDBC=AB8如图,在ABC中,AB=AC=13,BC=10,点D为BC的中点,DEAB于点E,则tanBDE的值等于()ABCD9如图,已知点P是RtABC的斜边BC上任意一点,若过点P作直线PD与直角边AB或AC相交于点D,截得的小三角形与ABC相似,那么D点的位置最多有()A2处B3处C4处D5处10如图,RtABC中,AC=BC=2,正方形CDEF的顶点D、F分别在AC、BC边上,设CD的长度为x,ABC与正方形CDEF重叠部分的面积为y,则下列图象中能表示y与x之间的函数关系的是()ABCD二、填空题(本大题共4小题,每小题5分,满分20分)11计算:sin60cos30tan45=12如图,点A、B、C在O上,AOC=60,则ABC的度数是13有甲、乙两张纸条,甲纸条的宽度是乙纸条宽的2倍,如图,将这两张纸条交叉重叠地放在一起,重合部分为四边形ABCD则AB与BC的数量关系为14如图,在正方形ABCD中,BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连结BD、DP,BD与CF相交于点H给出下列结论:ABEDCF; =;DP2=PHPB; =其中正确的是(写出所有正确结论的序号)三、(本大题共2小题,每小题8分,满分16分)15(8分)抛物线y=2x2+8x6(1)用配方法求顶点坐标,对称轴;(2)x取何值时,y随x的增大而减小?16(8分)已知如图,AB是O的直径,弦CDAB,垂足为E,连接AC若A=22.5,CD=8cm,求O的半径四、(本大题共2小题,每小题8分,满分16分)17(8分)如图,ABC的顶点坐标分别为A(1,3)、B(4,2)、C(2,1)(1)作出与ABC关于x轴对称的A 1B1C1,并写出点A1的坐标;(2)以原点O 为位似中心,在原点的另一侧画出A2B2C2,使=,并写出点A2的坐标18(8分)如图所示,我市某中学课外活动小组的同学利用所学知识去测量釜溪河沙湾段的宽度小宇同学在A处观测对岸C点,测得CAD=45,小英同学在距A处50米远的B处测得CBD=30,请你根据这些数据算出河宽(精确到0.01米,参考数据1.414,1.732)五、(本大题共2小题,每小题10分,满分20分)19(10分)如图,D是AC上一点,BEAC,AE分别交BD、BC于点F、G若1=2,线段BF、FG、FE之间有怎样的关系?请说明理由20(10分)杂技团进行杂技表演,演员从跷跷板右端A处弹跳到人梯顶端椅子B处,其身体(看成一点)的路线是抛物线y=x2+3x+1的一部分,如图所示(1)求演员弹跳离地面的最大高度;(2)已知人梯高BC=3.4米,在一次表演中,人梯到起跳点A的水平距离是4米,问这次表演是否成功?请说明理由六、(本题满分12分)21(12分)如图,点M是ABC内一点,过点M分别作直线平行于ABC的各边,所形成的三个小三角形1、2、3(图中阴影部分)的面积分别是1、4、25则ABC的面积是七、(本题满分12分)22(12分)某商场购进一批单价为16元的日用品,销售一段时间后,为了获得更多的利润,商店决定提高价格经调查发现,若按每件20元的价格销售时,每月能卖出360件,在此基础上,若涨价5元,则每月销售量将减少150件,若每月销售量y(件)与价格x(元/件)满足关系式y=kx+b(1)求k,b的值;(2)问日用品单价应定为多少元?该商场每月获得利润最大,最大利润是多少?八、(本题满分14分)23(14分)如图,在ABCD,E为边BC的中点,F为线段AE上一点,联结BF并延长交边AD于点G,过点G作AE的平行线,交射线DC于点H设=x(1)当x=1时,求AG:AB的值;(2)设=y,求y关于x的函数关系式;(3)当DH=3HC时,求x的值2016-2017学年安徽省合肥市瑶海区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)以下每小题都给出了A,B,C,D四个选项,其中只有一个是正确的,请把正确答案的代号填在表中1抛物线y=ax2+bx3经过点(1,1),则代数式a+b的值为()A2B3C4D6【考点】二次函数图象上点的坐标特征【分析】把点(1,1)代入函数解析式即可求出a+b的值【解答】解:二次函数y=ax2+bx3(a0)的图象经过点(1,1),a+b3=1,a+b=4,故选:C【点评】本题考查了二次函数图象上点的坐标特征,整体思想的利用是解题的关键2在RtABC中,C=90,AB=5,AC=3下列选项中,正确的是()AsinA=BcosA=CtanA=DcotA=【考点】锐角三角函数的定义【分析】首先在直角ABC中利用勾股定理求得BC的长,然后利用三角函数的定义进行判断【解答】解:在直角ABC中BC=4A、sinA=,选项错误;B、cosA=,选项正确;C、tanA=,选项错误;D、cotA=,选项错误故选B【点评】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边3若ab=cd,且abcd0,则下列式子正确的是()Aa:c=b:dBd:c=b:aCa:b=c:dDa:d=c:b【考点】比例的性质【分析】根据比例的性质,可得答案【解答】解:A、a:c=b:d,得ad=bc,故A错误;B、d:c=b:a,得bc=ad,故B错误;C、a:b=c:d,得ac=bd,故C错误;D、a:d=c:b,得ab=cd,故D正确;故选:D【点评】本题考查了比例的性质,比例的性质是:两外项的乘积等于两内项的乘积4对于反比例函数,下列说法中不正确的是()A点(2,1)在它的图象上B它的图象在第一、三象限Cy随x的增大而减小D当x0时,y随x的增大而减小【考点】反比例函数的性质【分析】根据反比例函数的性质用排除法解答,当系数k0时,函数图象在第一、三象限,当x0或x0时,y随x的增大而减小,据此可以得到答案【解答】解:A、把点(2,1)代入反比例函数y=得1=1,本选项正确;B、k=20,图象在第一、三象限,本选项正确;C、当x0时,y随x的增大而减小,本选项不正确;D、当x0时,y随x的增大而减小,本选项正确故选C【点评】本题考查了反比例函数y=(k0)的性质:当k0时,图象分别位于第一、三象限;当k0时,图象分别位于第二、四象限当k0时,在同一个象限内,y随x的增大而减小;当k0时,在同一个象限,y随x的增大而增大5如图,ABC中,点D、E分别是AB、AC的中点,则下列结论:BC=2DE;ADEABC;其中正确的有()A3个B2个C1个D0个【考点】三角形中位线定理;相似三角形的判定与性质【分析】若D、E是AB、AC的中点,则DE是ABC的中位线,可根据三角形中位线定理得出的等量条件进行判断【解答】解:D、E是AB、AC的中点,DE是ABC的中位线;DEBC,BC=2DE;(故正确)ADEABC;(故正确),即;(故正确)因此本题的三个结论都正确,故选A【点评】此题主要考查了三角形中位线定理以及相似三角形的判定和性质6AB为O的直径,点C、D在O上若ABD=42,则BCD的度数是()A122B132C128D138【考点】圆周角定理【分析】连接AD,根据圆周角定理可得ADB=90,然后可得DAB=48,再根据圆内接四边形对角互补可得答案【解答】解:连接AD,AB为O的直径,ADB=90,ABD=42,DAB=48,BCD=18048=132,故选:B【点评】此题主要考查了圆周角定理和圆内接四边形的性质,关键是掌握半圆(或直径)所对的圆周角是直角7已知点C在线段AB上,且点C是线段AB的黄金分割点(ACBC),则下列结论正确的是()AAB2=ACBCBBC2=ACBCCAC=BCDBC=AB【考点】黄金分割【分析】根据黄金分割的定义得出=,从而判断各选项【解答】解:点C是线段AB的黄金分割点且ACBC,=,即AC2=BCAB,故A、B错误;AC=AB,故C错误;BC=AB,故D正确;故选:D【点评】本题主要考查黄金分割,掌握黄金分割的定义和性质是解题的关键8如图,在ABC中,AB=AC=13,BC=10,点D为BC的中点,DEAB于点E,则tanBDE的值等于()ABCD【考点】解直角三角形;等腰三角形的性质;勾股定理【分析】连接AD,由ABC中,AB=AC=13,BC=10,D为BC中点,利用等腰三角形三线合一的性质,可证得ADBC,再利用勾股定理,求得AD的长,那么在直角ABD中根据三角函数的定义求出tanBAD,然后根据同角的余角相等得出BDE=BAD,于是tanBDE=tanBAD【解答】解:连接AD,ABC中,AB=AC=13,BC=10,D为BC中点,ADBC,BD=BC=5,AD=12,tanBAD=ADBC,DEAB,BDE+ADE=90,BAD+ADE=90,BDE=BAD,tanBDE=tanBAD=故选C【点评】此题考查了解直角三角形、等腰三角形的性质、勾股定理、锐角三角函数的定义以及余角的性质此题难度适中,解题的关键是准确作出辅助线,注意数形结合思想的应用9如图,已知点P是RtABC的斜边BC上任意一点,若过点P作直线PD与直角边AB或AC相交于点D,截得的小三角形与ABC相似,那么D点的位置最多有()A2处B3处C4处D5处【考点】相似三角形的判定【分析】过点P作直线PD与直角边AB或AC相交于点D,截得的三角形与原三角形有一个公共角,只需作一个直角即可【解答】解:截得的小三角形与ABC相似,过P作AC的垂线,作AB的垂线,作BC的垂线,所截得的三角形满足题意,则D点的位置最多有3处故选B【点评】此题考查了相似三角形的判定,熟练掌握相似三角形的判定方法是解本题的关键10如图,RtABC中,AC=BC=2,正方形CDEF的顶点D、F分别在AC、BC边上,设CD的长度为x,ABC与正方形CDEF重叠部分的面积为y,则下列图象中能表示y与x之间的函数关系的是()ABCD【考点】动点问题的函数图象;等腰三角形的性质【分析】分类讨论:当0x1时,根据正方形的面积公式得到y=x2;当1x2时,ED交AB于M,EF交AB于N,利用重叠的面积等于正方形的面积减去等腰直角三角形MNE的面积得到y=x22(x1)2,配方得到y=(x2)2+2,然后根据二次函数的性质对各选项进行判断【解答】解:当0x1时,y=x2,当1x2时,ED交AB于M,EF交AB于N,如图,CD=x,则AD=2x,RtABC中,AC=BC=2,ADM为等腰直角三角形,DM=2x,EM=x(2x)=2x2,SENM=(2x2)2=2(x1)2,y=x22(x1)2=x2+4x2=(x2)2+2,y=,故选:A【点评】本题考查了动点问题的函数图象:通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力用图象解决问题时,要理清图象的含义即会识图也考查了等腰直角三角形的性质二、填空题(本大题共4小题,每小题5分,满分20分)11计算:sin60cos30tan45=【考点】特殊角的三角函数值【分析】先把sin60=,tan45=1,cos30=代入原式,再根据实数的运算法则进行计算【解答】解:sin60cos30tan45,=1,=故答案为:【点评】本题考查的是特殊角的三角函数值,熟记各特殊角的三角函数值是解答此题的关键12如图,点A、B、C在O上,AOC=60,则ABC的度数是150【考点】圆周角定理【分析】首先在优弧上取点D,连接AD,CD,由圆周角定理,即可求得ADC的度数,又由圆的内接四边形的性质,即可求得答案【解答】解:在优弧上取点D,连接AD,CD,AOC=60,ADC=AOC=30,ABC+ADC=180,ABC=180ADC=18030=150故答案为:150【点评】此题考查了圆周角定理与圆的内接四边形的性质此题比较简单,注意掌握辅助线的作法13有甲、乙两张纸条,甲纸条的宽度是乙纸条宽的2倍,如图,将这两张纸条交叉重叠地放在一起,重合部分为四边形ABCD则AB与BC的数量关系为AB=2BC【考点】相似三角形的判定与性质【分析】分别过A作AEBC于E、作AFCD于F,再根据甲纸条的宽度是乙纸条宽的2倍可得出AE=2AF,再由平行四边形的性质得出ABC=ADC,进而可判断出ABEADF,其相似比为2:1【解答】解:过A作AEBC于E、作AFCD于F,甲纸条的宽度是乙纸条宽的2倍,AE=2AF,纸条的两边互相平行,四边形ABCD是平行四边形,ABC=ADC,AD=BC,AEB=AFD=90,ABEADF,=,即=故答案为:AB=2BC【点评】本题考查的是相似三角形的判定与性质,根据题意作出辅助线,构造出相似三角形是解答此题的关键14如图,在正方形ABCD中,BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连结BD、DP,BD与CF相交于点H给出下列结论:ABEDCF; =;DP2=PHPB; =其中正确的是(写出所有正确结论的序号)【考点】相似三角形的判定与性质;全等三角形的判定与性质;正方形的性质【分析】根据等边三角形的性质和正方形的性质,得到ABE=DCF,A=ADC,AB=CD,证得ABEDCF,故正确;由于FDP=PBD,DFP=BPC=60,推出DFPBPH,得到=故错误;由于PDH=PCD=30,DPH=DPC,推出DPHCPD,得到=,PB=CD,等量代换得到PD2=PHPB,故正确;根据三角形面积计算公式,结合图形得到BPD的面积=BCP的面积+CDP面积BCD的面积,得到=故正确【解答】解:BPC是等边三角形,BP=PC=BC,PBC=PCB=BPC=60,在正方形ABCD中,AB=BC=CD,A=ADC=BCD=90ABE=DCF=30,在ABE与CDF中,ABEDCF,故正确;PC=CD,PCD=30,PDC=75,FDP=15,DBA=45,PBD=15,FDP=PBD,DFP=BPC=60,DFPBPH,=,故错误;PDH=PCD=30,DPH=DPC,DPHCDP,=,PD2=PHCD,PB=CD,PD2=PHPB,故正确;如图,过P作PMCD,PNBC,设正方形ABCD的边长是4,BPC为正三角形,PBC=PCB=60,PB=PC=BC=CD=4,PCD=30PN=PBsin60=4=2,PM=PCsin30=2,SBPD=S四边形PBCDSBCD=SPBC+SPDCSBCD=42+2444=4+48=44,=故答案为:【点评】本题考查的正方形的性质以及等积变换,解答此题的关键是作出辅助线,利用锐角三角函数的定义求出PE及PF的长,再根据三角形的面积公式得出结论三、(本大题共2小题,每小题8分,满分16分)15抛物线y=2x2+8x6(1)用配方法求顶点坐标,对称轴;(2)x取何值时,y随x的增大而减小?【考点】二次函数的三种形式;二次函数的性质【分析】(1)利用配方法将抛物线解析式边形为y=2(x2)2+2,由此即可得出抛物线的顶点坐标以及抛物线的对称轴;(2)由a=20利用二次函数的性质即可得出:当x2时,y随x的增大而减小,此题得解【解答】解:(1)y=2x2+8x6=2(x24x)6=2(x24x+4)+86=2(x2)2+2,该抛物线的顶点坐标为(2,2),对称轴为直线x=2(2)a=20,当x2时,y随x的增大而减小【点评】本题考查了二次函数的三种形式以及二次函数的性质,利用配方法将二次函数解析式的一般式换算成顶点式是解题的关键16已知如图,AB是O的直径,弦CDAB,垂足为E,连接AC若A=22.5,CD=8cm,求O的半径【考点】垂径定理;勾股定理【分析】连接OC,由圆周角定理得出COE=45,根据垂径定理可得CE=DE=4cm,证出COE为等腰直角三角形,利用特殊角的三角函数可得答案【解答】解:连接OC,如图所示:AB是O的直径,弦CDAB,CE=DE=CD=4cm,A=22.5,COE=2A=45,COE为等腰直角三角形,OC=CE=4cm,即O的半径为4cm【点评】此题主要考查了圆周角定理、垂径定理、以及三角函数的应用;关键是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半四、(本大题共2小题,每小题8分,满分16分)17如图,ABC的顶点坐标分别为A(1,3)、B(4,2)、C(2,1)(1)作出与ABC关于x轴对称的A 1B1C1,并写出点A1的坐标;(2)以原点O 为位似中心,在原点的另一侧画出A2B2C2,使=,并写出点A2的坐标【考点】作图-位似变换;作图-轴对称变换【分析】(1)利用关于x轴对称的点的坐标特征,写出A1、B1、C1的坐标,然后描点即可得到A 1B1C1;(2)把A、B、C的横纵坐标后乘以2得到出A2、B2、C2的坐标,然后描点即可得到A 2B2C2【解答】解:(1)如图,A 1B1C1为所作,A1(1,3);(2)如图,A2B2C2为所作,A2(2,6)【点评】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心18如图所示,我市某中学课外活动小组的同学利用所学知识去测量釜溪河沙湾段的宽度小宇同学在A处观测对岸C点,测得CAD=45,小英同学在距A处50米远的B处测得CBD=30,请你根据这些数据算出河宽(精确到0.01米,参考数据1.414,1.732)【考点】解直角三角形的应用【分析】设河宽为未知数,那么可利用三角函数用河宽表示出AE、EB,然后根据BEAE=50就能求得河宽【解答】解:过C作CEAB于E,设CE=x米,在RtAEC中:CAE=45,AE=CE=x在RtBCE中:CBE=30,BE=CE=x,x=x+50解之得:x=25+2568.30答:河宽为68.30米【点评】此题主要考查了三角函数的概念和应用,解题关键是把实际问题转化为数学问题,抽象到三角形中,利用三角函数进行解答五、(本大题共2小题,每小题10分,满分20分)19(10分)(2016秋瑶海区期末)如图,D是AC上一点,BEAC,AE分别交BD、BC于点F、G若1=2,线段BF、FG、FE之间有怎样的关系?请说明理由【考点】相似三角形的判定与性质【分析】根据BEAC,可得1=E,然后有1=2,可得2=E,又由GFB=BFE,可得出BFGEFB,最后可得出BF2=FGFE【解答】解:BF2=FGFE理由:BEAC,1=E,1=2,2=E,又GFB=BFE,BFGEFB,=,即BF2=FGFE【点评】本题考查了相似三角形的判定与性质,解答本题的关键是根据BEAC,得出1=E,进而判定BFGEFB20(10分)(2008安徽)杂技团进行杂技表演,演员从跷跷板右端A处弹跳到人梯顶端椅子B处,其身体(看成一点)的路线是抛物线y=x2+3x+1的一部分,如图所示(1)求演员弹跳离地面的最大高度;(2)已知人梯高BC=3.4米,在一次表演中,人梯到起跳点A的水平距离是4米,问这次表演是否成功?请说明理由【考点】二次函数的应用【分析】(1)将二次函数化简为y=(x)2+,即可解出y最大的值(2)当x=4时代入二次函数可得点B的坐标在抛物线上【解答】解:(1)将二次函数y=x2+3x+1化成y=(x)2,当x=时,y有最大值,y最大值=,(5分)因此,演员弹跳离地面的最大高度是4.75米(6分)(2)能成功表演理由是:当x=4时,y=42+34+1=3.4即点B(4,3.4)在抛物线y=x2+3x+1上,因此,能表演成功(12分)【点评】本题考查点的坐标的求法及二次函数的实际应用此题为数学建模题,借助二次函数解决实际问题六、(本题满分12分)21(12分)(2016秋瑶海区期末)如图,点M是ABC内一点,过点M分别作直线平行于ABC的各边,所形成的三个小三角形1、2、3(图中阴影部分)的面积分别是1、4、25则ABC的面积是64【考点】相似三角形的判定与性质【分析】首先过M作BC的平行线交AB、AC于D、E,过M作AC平行线交AB、BC于F、H,过M作AB平行线交AC、BC于I、G,判断出123,再根据相似三角形的性质,判断出它们的边长比为1:2:5;然后判断出BC、DM的关系,根据相似三角形的面积的比等于它们的相似比的平方,判断出SABC、SFDM的关系,求出ABC的面积是多少即可【解答】解:如图,过M作BC的平行线交AB、AC于D、E,过M作AC平行线交AB、BC于F、H,过M作AB平行线交AC、BC于I、G,根据题意得,123,1:2=1:4,1:3=1:25,它们的边长比为1:2:5,又四边形BDMG与四边形CEMH为平行四边形,DM=BG,EM=CH,设DM为x,则BC=BG+GH+CH=x+5x+2x=8x,BC:DM=8:1,SABC:SFDM=64:1,SABC=164=64故答案为:64【点评】此题主要考查了三角形相似的判定和性质的应用,要熟练掌握,解答此题的关键是要明确:三边法:三组对应边的比相等的两个三角形相似;两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;两角法:有两组角对应相等的两个三角形相似七、(本题满分12分)22(12分)(2016秋瑶海区期末)某商场购进一批单价为16元的日用品,销售一段时间后,为了获得更多的利润,商店决定提高价格经调查发现,若按每件20元的价格销售时,每月能卖出360件,在此基础上,若涨价5元,则每月销售量将减少150件,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 华师大版初中科学1.2 水的三态变化(30课件)
- 20XX年1月华懋达集团年会庆典概念方案
- 2024年烟台货运资格证模拟考试题
- 算法设计与分析 课件 5.9-动态规划应用-最优二叉搜索树
- 2024年宣城客运资格证考试答题
- 2024年贵州客运从业资格证的考试题目是什么题
- 吉首大学《结构试验》2021-2022学年第一学期期末试卷
- 吉首大学《当代中国电影》2021-2022学年期末试卷
- 《机床夹具设计》试题4
- 吉林艺术学院《音乐文论写作Ⅱ》2021-2022学年第一学期期末试卷
- 2024中科院心理咨询师考试复习题库(官方版)-上单选题汇
- 小学未成年人思想道德建设工作实施方案
- 化工公司安全知识竞赛题库(共1000题)
- GB/T 44421-2024矫形器配置服务规范
- 福建省福州市(2024年-2025年小学二年级语文)统编版期中考试试卷(含答案)
- 2024-2024部编版九年级语文上册期末考试测试卷(附答案)
- 争做“四有好老师”-当好“四个引路人”
- 2024-2025学年八年级生物上册第一学期 期末综合模拟测试卷( 人教版)
- 2024-2030年中国生物炭行业市场发展趋势与前景展望战略分析报告
- 中国融通地产社招笔试
- YDT 4565-2023物联网安全态势感知技术要求
评论
0/150
提交评论