




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
教学资料范本2019-2020学年数学高中人教A版必修2学案:1.3.1柱体、锥体、台体的表面积和体积 含解析编 辑:_时 间:_第一章1.3空间几何体的表面积与体积1.3.1柱体、锥体、台体的表面积与体积学习目标1.了解柱体、锥体、台体的表面积和体积计算公式,提高学生的空间想象能力和几何直观能力,培养学生的应用意识,增加学生学习数学的兴趣.2.掌握简单几何体的体积与表面积的求法,提高学生的运算能力,培养学生转化、化归以及类比的能力.学习过程一、课题导入,问题探究问题1:我们已经学过正方体和长方体的表面积,以及它们的展开图,你知道上述几何体的展开图与其表面积的关系吗?问题2:棱柱、棱锥、棱台也是由多个平面图形围成的几何体,如何计算它们的表面积?问题3:类比棱柱和棱锥,如何根据圆柱、圆锥的几何结构特征,求它们的表面积?问题4:联系圆柱、圆锥的侧面展开图,你能想象圆台侧面展开图的形状,并且画出它吗?如果圆台的上、下底面半径分别是r,r,母线长为l,你能计算出它的表面积吗?二、类比思考,引起联想问题5:请同学们联想一下圆柱、圆锥和圆台的结构特征,它们的表面积之间有什么关系?问题6:回顾长方体、正方体和圆柱,你能将它们的体积公式统一成一种形式吗,并依次类比出柱体的体积公式.问题7:怎么得到锥体和台体的体积公式呢?三、典型例题【例1】若一个正三棱柱的三视图如图所示,则这个正三棱柱的表面积为()A.18B.15C.24+8D.24+16【例2】已知棱长为a,各面均为等边三角形的四面体S-ABC,求它的表面积.【例3】(1)两个平行于圆锥底面的平面将圆锥的高分成相等的三段,那么圆锥被分成的三部分的体积的比是()A.123B.1719C.345D.1927(2)三棱锥V-ABC的中截面是A1B1C1,则三棱锥V-A1B1C1与三棱锥A-A1BC的体积之比是()A.12B.14C.16D.18【例4】 有一堆规格相同的铁制(铁的密度是7.8 g/cm3)六角螺帽,共重5.8 kg,已知底面是正六边形,边长为12 mm,内孔直径为10 mm,高为10 mm,问这堆螺帽大约有多少个?(取3.14)四、作业精选,巩固提高1.如果一个空间几何体的正视图与侧视图均为全等的等边三角形,俯视图为一个半径为1的圆及其圆心,那么这个几何体的体积为()A.B.C.D.2.向高为H的水瓶中匀速注水,注满为止,如果注水量V与水深h的函数关系如图所示,那么水瓶的形状是()3.一个圆台的上、下底面面积分别是1 cm2和49 cm2,一个平行于底面的截面面积为25 cm2,则这个截面与上、下底面的距离之比是()A.21B.31C.1D.14.已知一圆锥的侧面展开图为半圆,且面积为S,则圆锥的底面面积是.5.已知某几何体的俯视图是如图所示的矩形,正视图是一个底边长为8、高为4的等腰三角形,侧视图是一个底边长为6、高为4的等腰三角形.求(1)该几何体的体积V;(2)该几何体的侧面积S.布置作业课本P28习题1.3A组第1,2,3题.参考答案一、问题1:正方体、长方体是由多个平面图形围成的几何体,它们的表面积就是各个面的面积的和.问题2:棱柱的侧面展开图是平行四边形,其表面积等于围成棱柱的各个面的面积的和;棱锥的侧面展开图是由多个三角形拼接成的,其表面积等于围成棱锥的各个面的面积的和;棱台的侧面展开图是由多个梯形拼接成的,其表面积等于围成棱台的各个面的面积的和.问题3:由于它们的底面都是圆面,其底面积直接应用圆的面积公式即可,其中圆柱的侧面展开图是矩形,圆锥的侧面展开图是扇形,利用它们的侧面展开图来求得它们的侧面积,表面积等于侧面积与底面积的和.如果圆柱的底面半径为r,母线长为l,那么圆柱的底面面积为r2,侧面面积为2rl,因此,圆柱的表面积S=2r2+2rl=2r(r+l).如果圆锥的底面半径为r,母线长为l,那么它的表面积S=r2+rl=r(r+l).(设计意图:将空间图形问题转化为平面图形问题,是解决立体几何问题常用的方法.)问题4:圆台的侧面展开图是一个扇环,它的表面积等于上、下两个底面的面积和加上侧面的面积,即S=(r2+r2+rl+rl).二、问题5:圆柱和圆锥都可以看做是圆台变化而成的几何体,有如下的关系:S圆柱表=2r(r+l)S圆台表=(r1l+r2l+)S圆锥表=r(r+l).问题6:柱体的体积是V柱体=Sh(S为底面积,h为柱体的高).问题7:锥体的体积公式V锥体=Sh(S为底面积,h为锥体的高).台体的体积公式V=(S+S)h,其中S,S分别为上、下底面面积,h为圆台(棱台)高.三、【例1】解析:该正三棱柱的直观图如图所示,且底面等边三角形的高为2,正三棱柱的高为2,则底面等边三角形的边长为4,所以该正三棱柱的表面积为342+242=24+8.答案:C【例2】解:先求SBC的面积,过点S作SDBC,交BC于点D.因为BC=a,SD=a,所以SSBC=BCSD=aa=a2.因此,四面体S-ABC的表面积S=4a2=a2.【例3】 (1)解析:因为圆锥的高被分成的三部分相等,所以两个截面的半径与原圆锥底面半径之比为123,于是自上而下三个圆锥的体积之比为(r2h)(2r)22h(3r)23h=1827,所以圆锥被分成的三部分的体积之比为1(8-1)(27-8)=1719.答案:B(2)解析:中截面将三棱锥的高分成相等的两部分,所以截面与原底面的面积之比为14,将三棱锥A-A1BC转化为三棱锥A1-ABC,这样三棱锥V-A1B1C1与三棱锥A1-ABC的高相等,底面积之比为14,于是其体积之比为14.答案:B【例4】解:六角螺帽的体积是六棱柱体积与圆柱体积的差,即V=122610-3.14()2102 956(mm3)=2.956(cm3).所以螺帽的个数为5.81 000(7.82.956)252(个).答:这堆螺帽大约有252个.四、答案:1.A2.A3.A4.5.解:由三视图可知该几何体是一个底面边长分别为6,8的矩形,高为4的四棱锥,设底面矩形为ABCD,如图所示,AB=8,BC=6,高
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 泌尿外科疾病护理
- 山东省枣庄市枣庄五中2025年高考历史试题山东卷冲刺训练解析含解析
- 平邑县2024-2025学年三下数学期末学业质量监测模拟试题含解析
- 吉林省长春市外国语学校2024-2025学年高三下学期期末调研测试物理试题文试卷含解析
- 阳泉职业技术学院《施工组织与管理》2023-2024学年第二学期期末试卷
- 武汉城市学院《中小学美术教材研究》2023-2024学年第二学期期末试卷
- 西安文理学院《伤寒论选读》2023-2024学年第二学期期末试卷
- 山东省泰安市泰前中学2025年初三下学期教学反馈检测试题试数学试题含解析
- 重庆机电职业技术大学《汉语现代》2023-2024学年第二学期期末试卷
- 四川省成都市都江堰市2025年初三中考模拟试卷(二)生物试题含解析
- TK305水喷砂方案
- 先进加工技术--水切割技术PPT
- BIM施工方案(完整版)
- 吊装作业安全交底
- 现代化复卷机的结构原理和工艺控制
- 中国对外贸易促进(共40页).ppt
- 毕业论文风景园林工程与技术研究进展
- 中考复习专题—应用题
- 微机ATX电源电路的工作原理与维修
- 外贸中英文商业发票
- 2019JGJ196塔式起重机安装使用拆卸安全技术规程
评论
0/150
提交评论