汽车设计课程设计-设计“北京旗铃1.5吨轻型载货车后桥制动器”.docx_第1页
汽车设计课程设计-设计“北京旗铃1.5吨轻型载货车后桥制动器”.docx_第2页
汽车设计课程设计-设计“北京旗铃1.5吨轻型载货车后桥制动器”.docx_第3页
汽车设计课程设计-设计“北京旗铃1.5吨轻型载货车后桥制动器”.docx_第4页
汽车设计课程设计-设计“北京旗铃1.5吨轻型载货车后桥制动器”.docx_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京信息科技大学 汽车设计课程设计说明书汽车设计课程设计说明书设计题目:设计“北京旗铃1.5吨轻型载货车后桥制动器”设 计 者: 广廓 指导教师: 林慕义 北京信息科技大学车辆教研室2012年1月 15日26目 录第1章 绪 论11.1 制动系统设计的意义11.2 制动系统研究现状11.3 制动系系设计要求1第2章 鼓式制动系统分析32.1 鼓式制动器的结构型式及选择32.1.1领从蹄式制动器42.1.2双领蹄式制动器62.1.3双向双领蹄式制动器62.1. 4单向增力式制动器62.1.5双向增力式制动器7第3章 制动系统设计计算83.1 制动系统主要参数数值83.1.1 相关主要技术参数83.1.2 同步附着系数的分析93.2 制动器有关计算93.2.1 确定前后轴制动力矩分配系数93.2.2 制动器制动力矩的确定93.2.3 后轮制动器的结构参数与摩擦系数的选取103.3 制动器制动效能因数计算133.4 制动器主要零部件的结构设计15第4章 制动性能分析164.1 制动性能评价指标164.2 制动效能164.3 制动效能的恒定性164.4 制动时汽车的方向稳定性174.5制动器制动力分配曲线分析174.6制动减速度j184.7制动距离S184.8 摩擦衬片(衬块)的磨损特性计算194.9 驻车制动计算20第5章 液压制动驱动机构的设计计算215.1 制动缸直径与工作容积215.2 制动主缸直径与工作容积225.3 制动踏板力与踏板行程225.4 真空助力装置基本参数设计24参考文献25第1章 绪 论1.1 制动系统设计的意义汽车是现代交通工具中用得最多,最普遍,也是最方便的交通运输工具。汽车制动系是汽车底盘上的一个重要系统,它是制约汽车运动的装置。而制动器又是制动系中直接作用制约汽车运动的一个关健装置,是汽车上最重要的安全件。汽车的制动性能直接影响汽车的行驶安全性。随着公路业的迅速发展和车流密度的日益增大,人们对安全性、可靠性要求越来越高,为保证人身和车辆的安全,必须为汽车配备十分可靠的制动系统。本次课程设计题目为鼓式制动系统设计。通过查阅相关的资料,运用专业基础理论和专业知识,进行部件的设计计算和结构设计。使其达到以下要求:具有足够的制动效能以保证汽车的安全性;同时在材料的选择上尽量采用对人体无害的材料。1.2 制动系统研究现状车辆在行驶过程中要频繁进行制动操作,由于制动性能的好坏直接关系到交通和人身安全,因此制动性能是车辆非常重要的性能之一,改善汽车的制动性能始终是汽车设计制造和使用部门的重要任务。当车辆制动时,由于车辆受到与行驶方向相反的外力,所以才导致汽车的速度逐渐减小至0,对这一过程中车辆受力情况的分析有助于制动系统的分析和设计,因此制动过程受力情况分析是车辆试验和设计的基础,由于这一过程较为复杂,因此一般在实际中只能建立简化模型分析,通常人们主要从三个方面来对制动过程进行分析和评价:1)制动效能:即制动距离与制动减速度;2)制动效能的恒定性:即抗热衰退性;3)制动时汽车的方向稳定性;目前,对于整车制动系统的研究主要通过路试或台架进行,由于在汽车道路试验中车轮扭矩不易测量,因此,多数有关传动系!制动系的试验均通过间接测量来进行汽车在道路上行驶,其车轮与地面的作用力是汽车运动变化的根据,在汽车道路试验中,如果能够方便地测量出车轮上扭矩的变化,则可为汽车整车制动系统性能研究提供更全面的试验数据和性能评价。1.3 制动系设计要求能适应有关标准和法规的规定。各项性能指标除应满足设计任务书的规定和国家标准、法规规定的有关要求外,也应考虑销售对象国家和地区的法规和用户要求。具有足够的制动效能,包括行车制动效能和驻车制动效能。行车制动效能是用在一定的制动初速度下或最大踏板力下的制动减速度和制动距离两项指标来评定。欧、美、日等国的有关标准或法规对这两项指标的规定。综合国外有关标准和法规,可以认为:进行制动效能试验时的制动减速度j,载货汽车应为4.45.5相应的最大制动距离货车为0.15+/115,式中第一项为反应距离;第二项为制动距离,的单位为 m;的单位为km/h.工作可靠,汽车至少应有行车制动和驻车制动两套制动装置,且它们的制动驱动机构应是各自独立的。行车制动装置的制动驱动机构至少应有两套独立的管路,当其中一套失效时另一套应保证汽车制动效能不底于正常的30%;驻车 制动装置应采用工作可靠的机械式制动驱动机构。制动效能的热稳定性好。汽车的高速制动、短时间内的频繁重复制动,尤其是下长破时的连续制动,都会引起制动器的温升过快,温度过高特别下长坡时的频繁制动可使制动器摩擦副的温度达3000C4000C 有时甚至高达7000C.此时,制动摩擦副的摩擦系数会急剧减小,使制动效能下降而发生热衰退现象。制动器发生热衰退后,经过散热、降温和一定次数的和缓使用使摩擦表面得到磨合,其制动效能可重复恢复,这称为热恢复。提高摩擦材料的高温摩擦稳定性,增大制动鼓、盘的热容量,改善其散热性或采用强制冷却装置,都是提高抗热衰退的措施。制动效能的水稳定性好。制动器摩擦表面浸水后,会因水的润滑作用使摩擦系数急剧减少而发生所谓的“水衰退”现象。一般规定在出水后反复制动515次,即应恢复其制动效能。良好的摩擦材料吸水率低,其摩擦性能恢复迅速。也应防泥沙、污物等进入制动器工作表面,否则会使制动效能降低并加速磨损。某些越野车为了防止水和泥沙浸入而采用封闭的制动器。制动时的操作稳定性好。即使任何速度制动,汽车都不应当失去操作性和方向稳定性。为此,汽车前、后轮制动器的制动力矩应相同。否则当前轮抱死而侧滑时,将失去操作性;后轮抱死而侧滑甩尾,会失去方向稳定性;当左、右轮的制动力矩差值超过50%时,会发生制动时汽车跑偏。制动踏板和手柄的位置和行程符合人机工程学的要求,即操作方便性好,操作轻便,舒适,能减少疲劳。踏板形成;对货车应不大于160200mm。各国法规规定,制动的最大踏板力一般为150N(轿车)700N(货车)。设计时,紧急制动(约占制动总次数的5%10%)踏板力的选取范围:货车为350550N,采用伺服制动或动力制动装置时取其小值。应急制动时的手柄拉力以不大于400500N为宜。作用滞后的时间要尽可能地短,包括从制动踏板开始动作至达到给定制动效能水平所需的时间(制冻滞后时间)和从放开踏板至完全解除制动的时间(解除制动滞后时间)。制动时不应产生震动和噪音。与悬架、转向装置不产生运动干涉,在车轮跳动或汽车转向时不会引起自行制动。制动系中应有音响或光信号等警报装置以便能及时发现制动驱动机件的故障和功能失效;制动系中也有必要的安全装置,例如一旦主、挂车之间的连接制动管路损坏,应有防止压缩空气继续漏失的装置;在行驶过程中挂车一旦脱挂,亦应有安全装置驱动使驻车制动将其挺驻。能全天候使用,气温高时液压制动管路不应有气阻现象;气温低时液压制动管路不应出现结冰。制动系的机件应使用寿命长、制造成本低;对摩擦材料的选择也应考虑到环保要求,应力求减小制动时飞散到大气的有害于人体的石棉纤维。第2章 鼓式制动系统分析2.1 鼓式制动器的结构型式及选择鼓式制动器分为内张型鼓式制动器和外束型鼓式制动器两种结构型式。内张型鼓式制动器的摩擦元件是一对带有圆弧形摩擦蹄片的制动器,后者则安装在制动地板上,而制动地板则紧固在前桥的前梁或后桥桥壳半轴套管的凸缘上或变速器,分动器壳或其相固定的支架上,起旋转的摩擦元件为制动鼓。车轮制动器的制动鼓均固定在轮毂上,而中央制动器的制动鼓则固定在变速器或分动器的第二周后端。制动时,利用制动鼓的圆柱内表面与制动蹄片的外表面作为一对摩擦表面在制动鼓上产生摩擦力据,故又称为蹄式制动器。外束型鼓式制动器的固定摩擦元件是带有摩擦片且刚度较小的制动带,其旋转摩擦元件为制动鼓,并利用制动骨的外圆柱表面与制动带摩擦片的内圆弧面作为一对摩擦表面,产生摩擦力矩作用于制动鼓,故又称为带式制动器,由于外束型鼓式制动器通常简称为带式制动器,而且在汽车上已很少采用,所以内张型鼓式制动器通常简称为鼓式制动器,通常所说的鼓式制动器就是指这种内张型鼓式结构。制动蹄按其张开时的转动方向与制动鼓的旋转方向是否一致而分为领蹄和从蹄两种类型。制动蹄张开的转动方向与制动骨的旋转方向一致的制动蹄称为领蹄,两者方向不一致的称为从蹄。鼓式制动器按蹄的类型分为:领从蹄式制动器,双领蹄式制动器,双向双领蹄式制动器,单向增力式制动器和双向增力式制动器。图 2-1 鼓式制动器简图(a)领从蹄式(用凸轮张开);(b)领从蹄式(用制动轮缸张开);(c)双领蹄式(非双向,平衡式);(d)双向双领蹄式;(e)单向增力式;(f)双向增力式2.1.1、领从蹄式制动器如图2-1(a)、(b)所示,图上方的旋向箭头代表汽车前进时制动鼓的旋转方向(制动鼓正向旋转),蹄1为领蹄,蹄2为从蹄。汽车倒车时制动鼓的变为反向旋转,随之领蹄与从蹄相互对调。制动鼓正、反向旋转时总具有一个领蹄和一个从蹄的内张型鼓式制动器称为领从蹄式制动器。由图2-1(a)、(b)可见,领蹄所受的摩擦力使蹄压得更紧,即摩擦力矩具有“增势”作用,故又称增势蹄;而从蹄所受的摩擦力使蹄有离开制动鼓的趋势,即摩擦力矩具有“减势”作用,故又称减势蹄。“增势”作用使领蹄所受的法向反力增大,而“减势”作用使从蹄所受的法向反力减小。对于两蹄的张开力的领从蹄式制动器结构,如图2-1(b)所示,两蹄压紧制动鼓的法向力相等。但当制动鼓旋转并制动时,领蹄由于摩擦力矩的“增势”作用,使其进一步压紧制动鼓而使其所受的法向反力加大;从蹄由于摩擦力矩的“减势”作用而使其所受的法向反力减小。这样,由于两蹄所受的法向反力不等,不能相互平衡,其差值由车轮轮毂轴承承受。这种制动时两蹄法向反力不能相互平衡的制动器也称为非平衡式制动器。液压或楔块驱动的领从蹄式制动器均为非平衡式结构,也叫做简单非平衡式制动器。非平衡式制动器将对轮毂轴承造成附加径向载荷,而且领蹄摩擦衬片表面的单位压力大于从蹄的,磨损较严重。为使衬片寿命均衡,可将从蹄的摩擦衬片包角适当地减小。对于如图2-1 (a)所示具有定心凸轮张开装置的领从蹄式制动器,制动时,凸轮机构保证了两蹄等位移,作用于两蹄上的法向反力和由此产生的制动力矩分别相等,而作用于两蹄的张开力P1、P2则不等,且必然有P1P2。由于两蹄的法向反力N1=N2在制动鼓正、反两个方向旋转并制动时均成立,因此这种结构的特性是双向的,实际上也是平衡式的。其缺点是驱动凸轮的力要大而效率却相对较低,约为0.60.8。因为凸轮要求气压驱动,因此这种结构仅用于总质量大于或等于10 t的货车和客车上。领从蹄式制动器的两个蹄常有固定的支点。张开装置有凸轮式、楔块式、曲柄式和具有两个或四个等直径活塞的制动轮缸式。后者可保证作用在两蹄上的张开力相等并用液压驱动,而凸轮式、楔块式和曲柄式等张开装置则用气压驱动。当张开装置中的制动凸轮和制动楔块都是浮动的时,也能保证两蹄张开力相等,该凸轮称为平衡凸轮。非平衡式的制动凸轮的中心固定不能浮动,不能保证作用在两蹄上的张开力相等。领从蹄式制动器的效能及稳定性均处于中等水平,但由于其在汽车前进和倒车时的制动性能不变,结构简单,造价较低,也便于附装驻车制动机构,故仍广泛用作载货汽车的前、后轮以及轿车的后轮制动器。根据支承结构及调整方法的不同,领从蹄鼓式液压驱动的车轮制动器又有不同的结构方案,如图 2-2所示。图 2-2 领从蹄式制动器的结构方案(液压驱动)(a)一般形式;(b)单固定支点,轮缸上调整;(c)双固定支点,偏心轴调整;(d)浮动蹄片,支点端调整2.1.2、双领蹄式制动器当汽车前进时,若两制动蹄均为领蹄的制动器,称为双领蹄式制动器。但这种制动器在汽车倒车时,两制动蹄又都变为从蹄,因此,它又称为单向双领蹄式制动器。两制动蹄各用一个单活塞制动轮缸推动,两套制动蹄、制动轮缸等机件在制动底板上是以制动底板中心作对称布置的,因此两蹄对鼓作用的合力恰好相互平衡,故属于平衡式制动器。双领蹄式制动器有高的正向制动效能,但倒车时则变为双从蹄式,使制动效能大降。中级轿车的前制动器常用这种型式,这是由于这类汽车前进制动时,前轴的动轴荷及附着力大于后轴,而倒车时则相反,采用这种结构作为前轮制动器并与领从蹄式后轮制动器相匹配,则可较容易地获得所希望的前、后轮制动力分配()并使前、后轮制动器的许多零件有相同的尺寸。它不用于后轮还由于有两个互相成中心对称的制动轮缸,难于附加驻车制动驱动机构。2.1.3、双向双领蹄式制动器当制动鼓正向和反向旋转时两制动蹄均为领蹄的制动器,称为双向双领蹄式制动器。其两蹄的两端均为浮式支承,不是支承在支承销上,而是支承在两个活塞制动轮缸的支座上或其他张开装置的支座上)。当制动时,油压使两个制动轮缸的两侧活塞或其他张开装置的两侧均向外移动,使两制动蹄均压紧在制动鼓的内圆柱面上。制动鼓靠摩擦力带动两制动蹄转过一小角度,使两制动蹄的转动方向均与制动鼓的旋转方向一致;当制动鼓反向旋转时,其过程类同但方向相反。因此,制动鼓在正向、反向旋转时两制动蹄均为领蹄,故称为双向双领蹄式制动器。它也属于平衡式制动器。由于这种制动器在汽车前进和倒退时的性能不变,故广泛用于中、轻型载货汽车和部分轿车的前、后轮。但用作后轮制动器时,需另设中央制动器。2.1.4、单向增力式制动器单向增力式制动器的两蹄片只有一个固定支点,两蹄下端经推杆相互连接成一体,制动器仅有一个轮缸用来产生推力张开蹄片。汽车前进制动时,两蹄片皆为领蹄,次领蹄上不存在轮缸张开力,而且由于领蹄上的摩擦力经推杆作用到次领蹄,使制动器效能很高,居各式制动器之首。与双向增力式制动器比较,这种制动器的结构比较简单。因两块蹄片都是领蹄,所以制动器效能稳定性相当差。倒车制动时,两蹄又皆为从蹄,使制动器效能很低,又因两蹄片上单位压力不等,造成蹄片磨损不均匀,寿命不一样,这种制动器只有一个轮缸,故不适合用于双回路驱动机构,另外由于两蹄片下部联动,使调整蹄片间隙变得困难。因此少数总质量不大的商用车用其作为前轮制动器。2.1.5、双向增力式制动器双向增力式制动器的两蹄片端部有一个制动时不同时使用的共同支点,指点下方有一个轮缸,内装两个活塞用来同时驱动张开两蹄片,两蹄片下方经推杆连成一体。与单向增力式制动器不同的是,次领蹄上也作用由来自轮缸活塞推压的张开力,尽管这个张开力的作用效果较小,但因次领蹄下端受有来自领蹄经推杆作用的张开力很大,结果次领蹄上的制动力矩能达到主领蹄制动力的2-3倍。因此,采用这种制动器以后,即使制动驱动机构中不用伺服装置,也可以借助很小的踏板力得到很大的制动力矩,这种制动器前进与倒车的制动效果不变。双向增力式制动器因两蹄片均有领蹄,所以制动器效能稳定性差。除此之外,两蹄片上单位压力不等,故磨损不均匀,寿命不同,调整间隙工作与单向增力式一样比较困难,因只有一个轮缸,故制动器不适合用于有的双回路驱动机构。双向增力式制动器在大型高速轿车上用的较多,而且常常将其作为行车制动与驻车制动共用的制动器,但行车制动是由液压经制动轮缸产生制动蹄的张开力进行制动,而驻车制动则是用制动操纵手柄通过钢索拉绳及杠杆等机械操纵系统进行操纵。双向增力式制动器也广泛用作汽车的中央制动器,因为驻车制动要求制动器正向,反向的制动效能都很高,而且驻车制动若不用于应计制动时也不会产生高温,故其热衰退问题并不突出。还应指出,制动器的效能不仅与制动器的结构型式、结构参数和摩擦系数有关,也受到其他有关因素的影响。例如制动蹄摩擦衬片与制动鼓仅在衬片的中部接触时,输出的制动力矩就小;而在衬片的两端接触时,输出的制动力矩就大。制动器的效能常以制动器效能因数或简称为制动器因数BF(brake factor)来衡量,制动器因数BF可用下式表达: (2-1)式中 fN1,fN2:制动器摩擦副间的摩擦力(见图2-1);N1,N2:制动器摩擦副间的法向力,对平衡式鼓式制动器和盘式制动器: N1=N2f制动器摩擦副的摩擦系数;P鼓式制动器的蹄端作用力(见图2-1),盘式制动器衬块上的作用力。基本尺寸比例相同的各种内张型鼓式制动器以及盘式制动器的制动器因数BF与摩擦系数f之间的关系。BF值大,即制动效能好。在制动过程中由于热衰退,摩擦系数是会变化的,因此摩擦系数变化时,BF值变化小的,制动效能稳定性就好。综上所述,考虑到领从蹄式制动器的效能及稳定性均处于中等水平,且其在汽车前进和倒车时的制动性能不变,结构简单,造价较低,也便于附装驻车制动机构,广泛用作载货汽车的前、后轮以及轿车的后轮制动器。因此,本设计后轮制动器采用双固定支点的领从蹄式制动器。第3章 制动系统设计计算3.1制动系统主要参数数值3.1.1相关主要技术参数额定功率(kW):76扭矩(Nm):245最高车速(KM/h):95轴距(mm):3308 额定载重(吨):1.7整车整备质量(kg):2485最大设计总质量(kg):4410后桥载荷(kg):2825轮胎规格:7.00-16,7.50-16车轮工作半径(mm):383.27 (GB9744-1997)质心位置(mm): L1=2119mm L2= 1189mm质心高度(mm): 满载:hg=750同步附着系数:=0.53.1.2同步附着系数的分析(1)当时:制动时总是前轮先抱死,这是一种稳定工况,但丧失了转向能力;(2)当时:制动时总是后轮先抱死,这时容易发生后轴侧滑而使汽车失去方向稳定性;(3)当时:制动时汽车前、后轮同时抱死,是一种稳定工况,但也丧失了转向能力。分析表明,汽车在同步附着系数为的路面上制动(前、后车轮同时抱死)时,其制动减速度为,即,为制动强度。而在其他附着系数的路面上制动时,达到前轮或后轮即将抱死的制动强度这表明只有在的路面上,地面的附着条件才可以得到充分利用。根据相关资料查出货车0.5,故取=0.53.2制动器有关计算3.2.1确定前后轴制动力矩分配系数根据公式: (3-1)得: 3.2.2制动器制动力矩的确定 由轮胎与路面附着系数所决定的前后轴最大附着力矩: (3-2)式中:该车所能遇到的最大附着系数; q制动强度; 车轮有效半径; 后轴最大制动力矩; G汽车满载质量;L汽车轴距;其中q=0.65 (3-3)故前轴=前轮的制动力矩为=3003.8Nm后轴=6774.7Nm后轮的制动力矩为=3387.36Nm3.2.3后轮制动器的结构参数与摩擦系数的选取1、制动鼓内径输入力P一定时,制动鼓内径越大,则制动力矩越大,且散热能力也越强,但D的增大受轮辋内径限制,制动鼓与轮辋之间应保持足够的间隙,通常要求该间隙不小于20mm,否则不仅制动鼓散热条件太差,而且轮辋受热后可能粘住内胎或烤坏气门嘴。制动鼓应有足够的壁厚,用来保证有较大的刚度和热容量,以减少制动时的温度。制动鼓的直径小,刚度就大,并有利于保证制动鼓的加工精度。制动鼓直径与轮辋直径之比的范围如下:乘用车 =0.64-0.74商用车 =0.70-0.83轿车制动鼓内径一般比轮辋外径小125mm-150mm,载货汽车和客车的制动鼓内径一般比轮辋外径小80mm-100mm,设计时可按轮辋直径初步确定制动鼓内径。表4-1制动鼓最大内径轮辋直径/in121314151620制动鼓最大内径/mm轿车180200240260-货车,客车220240260300320420轮辋直径为=16in=1625.4mm=406.4mm而该车的最大内径为=320mm=320/406.4=0.78在0.70-0.83范围内,所以符合设计要求2、制动蹄摩擦衬片的包角及宽度表4-2 制动器衬片摩擦面积汽车类型汽车总质量/t单个制动器总的衬片摩擦面积轿车0.9-1.51.5-2.5100-200200-300客车与货车1.0-1.51.5-2.52.5-3.53.5-7.07.0-12.012.0-17.0120-200150-250(多为150-200)250-400300-650550-1000600-1500(多600-1200)制动蹄摩擦衬片的包角及宽度加上已初定的制动鼓内径决定了每个制动器的摩擦面积,即: (5-1)式中:D制动鼓内径(mm)b制动蹄摩擦衬片宽度(mm)分别为两蹄的摩擦衬片包角()摩擦衬片的包角通常在=90-120范围内选取,试验表明,摩擦衬片包角=90-100时磨损最小,制动鼓的温度也最低,而制动效能则最高。再减小虽有利于散热,但由于单位压力过高将加速磨损,包角不宜大于120,因为过大不仅不利于散热,而且易使只动作用不平顺,甚至可能发生自锁。摩擦衬片宽度b较大可以降低单位压力,减小磨损,但b的尺寸过大则不易保证与制动鼓全面接触,通常是根据在紧急制动时使其单位压力不超过2.5的条件来选择衬片宽度b的。设计时应尽量按擦擦片的产品规格选择b值。另外,根据国外统计资料可知,单个鼓式车轮制动器总的衬片摩擦面积随汽车总质量的增大而增大,(如表4-2所示)。而单个摩擦衬片的摩擦面积A又取决于制动鼓半径R,衬片宽度b及包角,即:A=Rb式中是以弧度(rad)为单位,当A,R,确定后,由上式也可初选衬片宽b的尺寸。制动器各蹄摩擦衬片总摩擦面积愈大,则制动时产生的单位面积正压力愈小,从而磨损亦愈小。在本设计中:根据QC/T309-1999制动鼓工作直径及制动蹄片宽度尺寸系列查得:b=100mm ,R=160mm ,=100,得:=320100(100+100)/360=55850.6(在30000-65000范围内符合要求)3、摩擦衬片起始角图 4-5 鼓式制动器的主要几何参数摩擦衬片起始角如图4-5所示。通常是将摩擦衬片布置在制动蹄外缘得得中央。有时为了适应单位压力的分布情况,将衬片相对于最大压力点对称布置,以改善制动效能和磨损的均匀性。在本设计中:=4、张开力P的作用线至制动器中心的距离a在满足制动轮缸或凸轮能够布置在制动鼓内的条件下,应使距离a尽可能地大,以提高起制动效能,初步设计时可暂取左右。在本设计中:=0.8160=128mm。取130mm5、制动蹄支销中心的坐标位置k与c 如图 4-5所示,制动蹄支销中心的坐标尺寸k是应尽可能地小,以使尺寸c尽可能地大,初步设计可取=0.8R左右。在本设计中:=0.8R=0.8160=128mm。取130mm6、摩擦片摩擦系数选择摩擦片时,不仅希望其摩擦系数要高些,而且还要求其热稳定行好,受温度和压力的影响小。不宜单纯地追求摩擦材料的高摩擦系数,应提高对摩擦系数的稳定性和降低制动器对摩擦系数偏离正常值的敏感性的要求。在假设的理想条件下计算制动器的制动力矩,取f=0.4可使计算结果接近实际值。另外,在选择摩擦材料时,应尽量采用减少污染和对人体无害的材料。 所以选择摩擦系数f=0.43.3制动器制动力矩及张开力计算1、 紧蹄产生的制动力矩Mt1=fF1R1F1:紧蹄的法向合力;R1:摩擦力的作用半径2、 为计算随张开力F01而变的力F1,列出蹄上的力平衡方程:为x1轴和力F1的作用线之间的夹角;为支撑反力在x1轴上的投影得到: 3、 紧蹄和松蹄上的制动力矩为:4、 计算、=arctan(cos60-cos260)/(2*1.745-sin260+sin60)=7.19=179.36mm因为对于松蹄和紧蹄,、是相同的;所以=、=。5、 制动力矩与张开力的关系: Mt1=346.68F01(Nmm)Mt2=116.86 F02(Nmm)6、 计算张开力:=7307.58N3.3制动器制动因数计算7、 领蹄制动蹄因数:根据公式 (3-5) h/b=2;c/b=0.84375得=1.22、从蹄制动蹄因数:根据公式 (3-6)得=0.63.4制动器主要零部件的结构设计1、制动鼓制动鼓应具有非常好的刚性和大的热容量,制动时温升不应超过极限值。制动鼓材料应与摩擦衬片相匹配,以保证具有高的摩擦系数并使工作表面磨损均匀。制动鼓相对于轮毂的对中是圆柱表面的配合来定位,并在两者装配紧固后精加工制动鼓内工作表面,以保证两者的轴线重合。两者装配后还需进行动平衡。其许用不平衡度对轿车为15Ncm20 Ncm;对货车为30 Ncm40 Ncm。微型轿车要求其制动鼓工作表面的圆度和同轴度公差0.03mm,径向跳动量0O 5mm,静不平衡度15N.cm。制动鼓壁厚的选取主要是从其刚度和强度方面考虑。壁厚取大些也有利于增大其热容量,但试验表明,壁厚由ll mm增至20 mm时,摩擦表面的平均最高温度变化并不大。一般铸造制动鼓的壁厚:轿车为7mm12mm;中、重型载货汽车为13mm18mm。制动鼓在闭口一侧外缘可开小孔,用于检查制动器间隙。本次设计采用的材料是HT20-40。2、制动蹄制动蹄腹板和翼缘的厚度,轿车的约为3mm5mm;货车的约为5mm8mm。摩擦衬片的厚度,轿车多为45mm5mm;货车多为8mm以上。衬片可铆接或粘贴在制动蹄上,粘贴的允许其磨损厚度较大,使用寿命增长,但不易更换衬片;铆接的噪声较小。本次制动蹄采用的材料为HT200。3、制动底板制动底板是除制动鼓外制动器各零件的安装基体,应保证各安装零件相互间的正确位置。制功底板承受着制动器工作时的制动反力矩,因此它应有足够的刚度。为此,由钢板冲压成形的制动底板均只有凹凸起伏的形状。重型汽车则采用可联铸铁KTH37012的制动底板。刚度不足会使制动力矩减小,踏板行程加大,衬片磨损也不均匀。本次设计采用45号钢。4、制动蹄的支承 二自由度制动筛的支承,结构简单,并能使制动蹄相对制动鼓自行定位。为了使具有支承销的一个自由度的制动蹄的工作表面与制动鼓的工作表面同轴心,应使支承位置可调。例如采用偏心支承销或偏心轮。支承销由45号钢制造并高频淬火。其支座为可锻铸铁(KTH37012)或球墨铸铁(QT40018)件。青铜偏心轮可保持制动蹄腹板上的支承孔的完好性并防止这些零件的腐蚀磨损。具有长支承销的支承能可靠地保持制动蹄的正确安装位置,避免侧向偏摆。有时在制动底板上附加一压紧装置,使制动蹄中部靠向制动底板,而在轮缸活塞顶块上或在张开机构调整推杆端部开槽供制动蹄腹板张开端插入,以保持制动蹄的正确位置。5、制动轮缸制功轮缸为液压制动系采用的活塞式制动蹄张开机构,其结构简单,在车轮制动器中布置方便。轮缸的缸体由灰铸铁HT250制成。其缸简为通孔,需镗磨。活塞由铝合金制造。活塞外端压有钢制的开槽顶块,以支承插人槽中的制动蹄腹板端部或端部接头。轮缸的工作腔由装在活塞上的橡胶密封圈或靠在活塞内端面处的橡胶皮碗密封。多数制动轮缸有两个等直径活塞;少数有四个等直径活塞;双领路式制动器的两蹄则各用一个单活塞制动轮缸推动。本次设计采用的是HT250。第4章 制动性能分析4.1 制动性能评价指标汽车制动性能主要由以下三个方面来评价:1)制动效能,即制动距离和制动减速度;2)制动效能的稳定性,即抗衰退性能;3)制动时汽车的方向稳定性,即制动时汽车不发生跑偏、侧滑、以及失去转向能力的性能。4.2 制动效能制动效能是指在良好路面上,汽车以一定初速度制动到停车的制动距离或制动时汽车的减速度。制动效能是制动性能中最基本的评价指标。制动距离越小,制动减速度越大,汽车的制动效能就越好。4.3 制动效能的恒定性制动效能的恒定性主要指的是抗热衰性能。汽车在高速行驶或下长坡连续制动时制动效能保持的程度。因为制动过程实际上是把汽车行驶的动能通过制动器吸收转换为热能,所以制动器温度升高后能否保持在冷态时的制动效能,已成为设计制动器时要考虑的一个重要问题。4.4 制动时汽车的方向稳定性制动时汽车的方向稳定性,常用制动时汽车给定路径行驶的能力来评价。若制动时发生跑偏、侧滑或失去转向能力。则汽车将偏离原来的路径。制动过程中汽车维持直线行驶,或按预定弯道行驶的能力称为方向稳定性。影响方向稳定性的包括制动跑偏、后轴侧滑或前轮失去转向能力三种情况。制动时发生跑偏、侧滑或失去转向能力时,汽车将偏离给定的行驶路径。因此,常用制动时汽车按给定路径行驶的能力来评价汽车制动时的方向稳定性,对制动距离和制动减速度两指标测试时都要求了其试验通道的宽度。方向稳定性是从制动跑偏、侧滑以及失去转向能力等方面考验。制动跑偏的原因有两个1)汽车左右车轮,特别是转向轴左右车轮制动器制动力不相等。2)制动时悬架导向杆系与转向系拉杆在运动学上的不协调(互相干涉)前者是由于制动调整误差造成的,是非系统的。而后者是属于系统性误差。侧滑是指汽车制动时某一轴的车轮或两轴的车轮发生横向滑动的现象。最危险的情况是在高速制动时后轴发生侧滑。防止后轴发生侧滑应使前后轴同时抱死或前轴先抱死后轴始终不抱死。理论上分析如下,真正的评价是靠实验的。4.5制动器制动力分配曲线分析对于一般汽车而言,根据其前、后轴制动器制动力的分配、载荷情况及路面附着系数和坡度等因素,当制动器制动力足够时,制动过程可能出现如下三种情况:1)前轮先抱死拖滑,然后后轮抱死拖滑。2)后轮先抱死拖滑,然后前轮抱死拖滑。3)前、后轮同时抱死拖滑。所以,前、后制动器制动力分配将影响汽车制动时的方向稳定性和附着条件利用程度,是设计汽车制动系必须妥善处理的问题。根据所给参数及制动力分配系数,应用MATLAB编制出制动力分配曲线如下:当I线与线相交时,前、后轮同时抱死。当I线在线下方时,前轮先抱死。当I线在线上方时,后轮先抱死通过该图可以看出相关参数和制动力分配系数的合理性。4.6 制动减速度制动系的作用效果,可以用最大制动减速度及最小制动距离来评价。假设汽车是在水平的,坚硬的道路上行驶,并且不考虑路面附着条件,因此制动力是由制动器产生。此时=式中 :汽车前、后轮制动力矩的总合。= M+ M= +6774.7=12782.46Nmr-滚动半径 r=383.27mmGa汽车总重 Ga=43218N代入数据得=(10789.8)/0.383274410=7.56m/s货车制动减速度应4.4m/s,所以符合要求。4.7 制动距离S在匀减速度制动时,制动距离S为式中,t:消除蹄与制动鼓间隙时间,取0.1s t:制动力增长过程所需时间取0.2s故=22.46m货车的最大制动距离为:V取50km/小时。S=0.1550+50/115=29.24mS S所以符合要求4.8摩擦衬片(衬块)的磨损特性计算摩擦衬片的磨损与摩擦副的材质,表面加工情况、温度、压力以及相对滑磨速度等多种因素有关,因此在理论上要精确计算磨损性能是困难的。但试验表明,摩擦表面的温度、压力、摩擦系数和表面状态等是影响磨损的重要因素。汽车的制动过程,是将其机械能(动能、势能)的一部分转变为热量而耗散的过程。在制动强度很大的紧急制动过程中,制动器几乎承担了耗散汽车全部动力的任务。此时由于在短时间内制动摩擦产生的热量来不及逸散到大气中,致使制动器温度升高。此即所谓制动器的能量负荷。能量负荷愈大,则摩擦衬片(衬块)的磨损亦愈严重。1)比能量耗散率双轴汽车的单个前轮制动器和单个后轮制动器的比能量耗散率分别为式中:汽车回转质量换算系数,紧急制动时,; :汽车总质量; ,:汽车制动初速度与终速度,/;计算时货车取18/; :制动时间,;按下式计算 t=18/6=3 :制动减速度, =0.6106; ,:前、后制动器衬片的摩擦面积;取=30000mm,=55850mm :制动力分配系数。则 =1.9货车鼓式制动器的比能量耗散率应不大于1.8,但当制动初速度低于18/时,允许略大于1.8,故符合要求=1.13货车鼓式制动器的比能量耗散率应不大于1.8,故符合要求。2)比滑磨功磨损和热的性能指标可用衬片在制动过程中由最高制动初速度至停车所完成的单位衬片面积的滑磨功,即比滑磨功来衡量:式中:汽车总质量 :车轮制动器各制动衬片的总摩擦面积,=1716cm; : :许用比滑磨功,货车取600J/800J/。 L =794.89J/600J/800J/故符合要求。4.9驻车制动计算1)汽车可能停驻的极限上坡路倾斜角 = =28式中:车轮与轮面摩擦系数,取0.7; :汽车质心至前轴间距离; :轴距; :汽车质心高度。最大停驻坡高度应不小于16%20%,故符合要求。2)汽车可能停驻的极限下坡路倾斜角 = =21最大停驻坡高度应不小于16%20%,故符合要求。第5章 液压制动驱动机构的设计计算为了确定制动主缸及制动轮缸的直径,制动踏板与踏板行程,踏板机构传动比,以及说明采用增压或助力装置的必要性,必须进行如下的设计计算。5.1、制动缸直径与工作容积制动轮缸对制动蹄或制动块的作用力P与轮缸直径及制动轮缸中的液压P有如下关系: (5-1)式中:考虑制动力调节装置作用下的轮缸或管路液压,= 812MPa。本设计中取制动管路液压在制动时一般不超过1012MPa,对盘式制动器可再高些。压力愈高轮缸直径就愈小,但对管路特别是制动软管及管接头则提出了更高的要求,对软管的耐压性、强度及接头的密封性的要求就更加严格。轮缸直径应在标准规定的尺寸系列中选取,轮缸直径的尺寸系列为:14.5,16,17.5,19,22,24,25,28,30,32,35,38,40,45,50,55mm。在本设计中选取轮缸直径为35mm。一个轮缸的工作容积: (5-2)式中:一个轮缸活塞的直径;n轮缸的活塞数目;( n=2)一个轮缸活塞在完全制动时的行程:在初步设计时,对鼓式制动器可取=22.5mm。(取=2.2mm)消除制动蹄(制动块)与制动鼓(制动盘)间的间隙所需的轮缸活塞行程,对鼓式制动器约等于相应制动蹄中部与制动鼓之间的间隙的2倍;因摩擦衬片(衬块)变形而引起的轮缸活塞行程,可根据衬片(衬块)的厚度、材料弹性模量及单位压力计算; ,鼓式制动器的蹄与鼓之变形而引起的轮缸活塞行程

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论