已阅读5页,还剩8页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
问题07 函数与方程、不等式相结合问题一、考情分析函数与方程、函数与不等式都是高中数学的重要内容,也都是高考的热点和重点,在每年的高考试题中这部分内容所占的比例都很大,函数与方程、函数与不等式是高中数学的主线,它们贯穿于高中数学的各个内容,求值的问题就要涉及到方程,求取值范围的问题就离不开不等式,但方程、不等式更离不开函数,函数与方程、函数与不等式思想的运用是我们解决问题的重要手段.二、经验分享(1) 确定函数零点所在区间,可利用零点存在性定理或数形结合法(2)判断函数零点个数的方法:解方程法;零点存在性定理、结合函数的性质;数形结合法:转化为两个函数图象的交点个数 【点评】本题考查了分段函数、对数函数和二次函数的性质,主要考察了不等式的恒成立问题和函数的最值问题. 注意不等式: 对是恒成立的.特别要注意等号成立的条件. 渗透到方程问题、不等式问题、和某些代数问题都可以转化为函数知识.且涉及的知识点多、面广,在概念性、应用性、理解性都有一定的要求,它们是高考中考查的重点,所以在教学中我们应引引起高度的重视.【小试牛刀】【2018届湖南衡阳高三12月联考】已知函数,若恰好存在3个整数,使得成立,则满足条件的整数的个数为 ( )A. 34 B. 33 C. 32 D. 25【答案】A【解析】画出的函数图象如图所示: (三) 函数、方程和不等式关系的应用函数、方程、不等式的结合,是函数某一变量值一定或在某一范围下的方程或不等式,体现了一般到特殊的观念.也体现了函数图像与方程、不等式的内在联系,在高中阶段,应该让学生进一步深刻认识和体会函数、方程、不等式三部分之间的内在联系,并把这种内在联系作为学习的基本指导思想,这也是高中数学最为重要的内容之一.而新课程标准中把这个联系提到了十分明朗、鲜明的程度.因此,在高三的复习中,对这部分内容应予以足够的重视.【例3】已知函数,其中m,a均为实数(1)求的极值;(2)设,若对任意的,恒成立,求的最小值;(3)设,若对任意给定的,在区间上总存在,使得成立,求的取值范围【分析】(1)求的极值,就是先求出,解方程,此方程的解把函数的定义域分成若干个区间,我们再确定在每个区间里的符号,从而得出极大值或极小值;(2)此总是首先是对不等式恒成立的转化,由(1)可确定在上是增函数,同样的方法(导数法)可确定函数在上也是增函数,不妨设,这样题设绝对值不等式可变为,整理为,由此函数在区间上为减函数,则在(3,4)上恒成立,要求的取值范围采取分离参数法得恒成立,于是问题转化为求在上的最大值;(3)由于的任意性,我们可先求出在上的值域,题设“在区间上总存在,使得成立”,转化为函数在区间上不是单调函数,极值点为(),其次,极小值,最后还要证明在上,存在,使,由此可求出的范围.【解析】(1),令,得x = 1 【点评】本题主要考查了导数的应用,求单调区间,极值,求函数的值域,以及不等式恒成立等函数的综合应用. 对于不等式的解法要熟练地掌握其基本思想,在运算过程中要细心,不可出现计算上的错误.解决不等式与函数、方程之间联系的题目时不仅要理解其内在的联系,还应注意转化的思想和数形结合的思想应用. 有关恒成立问题、能成立问题、恰好成立问题在新课标高考试题中经常出现,要理解各自的区别.在求函数在闭区间上的最值问题可采用以下方法:先求出函数在导数为零的点、不可导点、闭区间的端点的函数值,然后进行比较,最大的函数值就是函数的最大值,最小的函数值就是函数的最小值. 【小试牛刀】【2017中原名校高三上学期第三次质量考评】已知定义在的函数,若关于的方程有且只有个不同的实数根,则实数的取值集合是 【答案】五、迁移运用1【2019届广东省汕头高三上学期第二次联考】设函数是定义在上周期为的函数,且对任意的实数,恒,当时,若在上有且仅有三个零点,则的取值范围为( )A B C D 【答案】C【解析】2【2019届四川省攀枝花市高三第一次统考】在直角坐标系中,如果相异两点都在函数y=f(x)的图象上,那么称为函数的一对关于原点成中心对称的点(与为同一对).函数的图象上关于原点成中心对称的点有( )A 对 B 对 C 对 D 对【答案】C【解析】因为关于原点对称的函数解析式为,所以函数的图象上关于原点成中心对称的点的组数,就是与为图象交点个数,同一坐标系内,画出与图象,如图,由图象可知,两个图象的交点个数有5个, 的图象上关于原点成中心对称的点有5组,故选C.3【2019届山东省济南高三11月调研】已知函数与的图象上存在关于轴对称的点,则的取值范围是( )A B C D 【答案】B4【2018届安徽省芜湖市高三一模】已知函数,若方程恰有四个不同的实数根,则实数的取值范围是( )A B C D 【答案】B【解析】因为,作图,由与相切 得,由与相切得设切点,如图可得实数的取值范围是,选B.5【2018届湖北省襄阳市高三1月调研】已知定义在上的函数,当时,且对于任意的实数,都有,若函数有且只有三个零点,则 的取值范围是( )A B C D 【答案】B【解析】由图可知,选B. 13.【河北石家庄2017届高三上学期第一次质检,10】已知函数,则的解集为( )A B C. D【答案】B【解析】因为当时,;当时, ,所以,等价于,即,解得,所以的解集为,故选B14.【2017江苏徐州丰县民族中学高三上学期第二次月考】设函数(,为自然对数的底数),若曲线上存在一点使得,则的取值范围是 【答案】【解析】由题设及函数的解析式可知,所以由题意问题转化为“存在,使得有解”,即在有解,令,则,当时,函数是增函数;所以,当,即.所以,故应填答案.15【2019届天津市三校联考】已知函数,若函数有两个零点,则实数的取值范围是_.【答案】【解析】16【2019届广东省佛山市顺德区高三第二次教学质量检测】已知函数在上连续,对任意都有;在中任意取两个不相等的实数,都有恒成立;若,则实数的取值范围是_【答案】【解析】由可知函数关于直线对称;在中任意取两个不相等的实数,都有恒成立;可知函数在区间上单调递减,由对称性可知函数在区间上单调递增,不妨设,则由可得,整理得,即,解得或,所以实数的取值范围是 19.定义在上的函数及二次函数满足:, ,且的最小值是()求和的解析式;()若对于,均有成立,求实数的取值范围;()设讨论方程的解的个数情况【答案】(),()()三个解()设, ,依题意知:当时, ,在上单调递增,解得, 实数的取值范围是; ()图像解法:的图象如图所示: 令,则而有两个解, 有个解有个解 (2)若,则或,;若,则或由解得,而无解综上所述,方程共有三个解20.已知函数(1)讨论的单调性;(2)证明:当时,;(3)若函数有两个零点,比较与的大小,并证明你的结论.【答案】(1)时,f(x)在上递增,上递减,上递增;时,f(x)在上递增;时,f(x)在上递增,上递减,上递增;时,f(x)在上递增,在上递减;(2)见解析;(3)综上所述:时,f(x)在上递增,上递减,上递增;时,f(x)在上递增;时,f(x)在上递增,上递减,上递增;时,f(x)在上递增,在上递减;(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年房地产开发商与装修公司装修合同
- 2024年度4S店全新汽车销售代理协议
- 2024年度物流运输与仓储服务合同
- 2024年度商业秘密许可合同
- 2024年承揽加工协议
- DB4116T 041-2023 小麦干旱监测评估服务流程
- DB4114T 219-2023 新生羔羊护理技术规程
- 2024年房产租赁权益转移合同
- 2024年情侣共同居住权利义务规定
- 2024年新建棚户区购房意向书
- 二年级排球教案
- 小数乘除法竖式计算专项练习题大全(每日一练共15份)
- 天津市和平区2024-2025学年九年级上学期期中考试英语试题
- 2024版抗菌药物DDD值速查表
- 小学二年级数学上册期中试卷(全套)
- DB11T 1580-2018 生产经营单位安全生产应急资源调查规范
- 各省中国铁路限公司2024招聘(目前38183人)高频难、易错点500题模拟试题附带答案详解
- 猜想04整式的乘法与因式分解(易错必刷30题10种题型专项训练)
- 2024二十届三中全会知识竞赛题库及答案
- 预防接种工作规范(2023年版)解读课件
- 医院检验外包服务项目招标文件
评论
0/150
提交评论