




已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3.2.2同角三角函数之间的关系学习目标1.能通过三角函数的定义推导出同角三角函数的基本关系式.2.理解同角三角函数的基本关系式.3.能运用同角三角函数的基本关系式进行三角函数式的化简、求值和证明知识链接1任意角的正弦、余弦、正切函数分别是如何定义的?答在直角坐标系中,以原点为圆心,以单位长度为半径的圆为单位圆锐角的终边与单位圆交于P(x,y)点,则有siny,cosx,tan.2如何利用任意角的三角函数的定义推导同角三角函数的基本关系式?答设点P(x,y)为终边上任意一点,P与O不重合P到原点的距离为r0,则sin,cos,tan.于是sin2cos2221,tan.即sin2cos21,tan.预习导引1任意角三角函数的定义如图所示,以任意角的顶点O为坐标原点,以角的始边的方向作为x轴的正方向,建立直角坐标系设P(x,y)是任意角终边上不同于坐标原点的任意一点其中,rOP0.则sin,cos,tan.2同角三角函数的基本关系式(1)平方关系:sin2cos21.(2)商数关系:tan (k,kZ)3同角三角函数基本关系式的变形(1)sin2cos21的变形公式:sin21cos2;cos21sin2;(2)tan的变形公式:sincostan;cos.要点一利用同角三角函数的基本关系式求值例1已知cos,求sin,tan的值解cos0,是第二或第三象限的角,如果是第二象限角,那么sin,tan.如果是第三象限角,同理可得sin,tan.规律方法已知角的某一种三角函数值,求角的其余三角函数值时,要注意公式的合理选择,一般是先选用平方关系,再用商数关系另外也要注意“1”的代换,如“1sin2cos2”本题没有指出是第几象限的角,则必须由cos 的值推断出所在的象限,再分类求解跟踪演练1已知tan,且是第三象限角,求sin,cos的值解由tan,得sincos又sin2cos21由得cos2cos21,即cos2.又是第三象限角,cos,sincos.要点二三角函数代数式的化简例2化简下列各式:(1);(2) ;(3) ,其中sintan0.解(1) |cos40|cos40.(2)1.(3)由于sintan0,则sin,tan异号,是第二、三象限角,cos0,.规律方法解答这类题目的关键在于公式的灵活运用,切实分析好同角三角函数间的关系,化简过程中常用的方法有:(1)化切为弦,即把非正弦、余弦的函数都化为正弦、余弦函数从而减少函数名称,达到化简的目的(2)对于含有根号的,常把根号下化成完全平方式,然后去根号达到化简的目的(3)对于化简含高次的三角函数式,往往借助于因式分解,或构造sin2cos21,以降低函数次数,达到化简的目的(4)关于sin ,cos 的齐次式的求值方法sin ,cos 的齐次式就是式子中的每一项都是关于sin ,cos 的式子且它们的次数之和相同,设为n次,将分子,分母同时除以cos 的n次幂,其式子可化为关于tan 的式子,如可化为,再代入求值若无分母时,把分母看作1,并将1用sin2cos2来代换,将分子、分母同除以cos2,可化为关于tan 的式子,如3sin22cos2可写成,进一步化为,再代入求值跟踪演练2已知tan3,则(1);(2)sin23sincos1.答案(1)1(2)1解析(1)1;(2)sin23sincos11.要点三三角函数恒等式的证明例3求证:.证明右边左边,原等式成立规律方法(1)证明三角恒等式的实质:清除等式两端的差异,有目的的化简(2)证明三角恒等式的基本原则:由繁到简(3)常用方法:左右;右左;左中右跟踪演练3已知2cos45cos27asin4bsin2c是恒等式求a、b、c的值解2cos45cos272(1sin2)25(1sin2)724sin22sin455sin272sin49sin2,故a2,b9,c0.1已知是第二象限角,sin,则cos等于 ()ABC.D.答案A解析利用同角三角函数基本关系式中的平方关系计算因为为第二象限角,所以cos .2已知是第三象限角,sin,则tan.答案解析由是第三象限的角,得到cos0,又sin,所以cos则tan.3若是第三象限角,化简.解是第三象限角,sin0,由三角函数线可知1cos0.4求证:.证明左边右边原等式成立1.同角三角函数的基本关系揭示了“同角不同名”的三角函数的运算规律,它的精髓在“同角”二字上,如sin22cos221,tan8等都成立,理由是式子中的角为“同角”2已知角的某一种三角函数值,求角的其余三角函数值时,要注意公式的合理选择一般是先选用平方关系,再用商数关系在应用平方关系求sin或cos时,其正负号是由角所在象限来决定,切不可不加分析,凭想象乱写公式3在三角函数的变换求值中,已知sincos,sincos,sincos中的一个,可以利用方程思想,求出另外两个的值4在进行三角函数式的化简或求值时,细心观察题目的特征,灵活、恰当的选用公式,统一角、统一函数、降低次数是三角函数关系式变形的出发点利用同角三角函数的基本关系主要是统一函数,要掌握“切化弦”和“弦化切”的方法5在化简或恒等式证明时,注意方法的灵活运用,常用的技巧有:“1”的代换;减少三角函数的个数(化切为弦、化弦为切等);多项式运算技巧的应用(如因式分解、整体思想等);对条件或结论的重新整理、变形,以便于应用同角三角函数关系来求解一、基础达标1若sin,且是第二象限角,则tan的值等于()AB.CD答案A解析为第二象限角,sin,cos,tan.2已知sin,则sin4cos4的值为()ABC.D.答案B解析sin4cos4sin2cos22sin2121.3已知2,则sincos的值是()A.BC.D答案C解析由题意得sincos2(sincos),(sincos)24(sincos)2,解得sincos.4若sinsin21,则cos2cos4等于()A0B1C2D3答案B解析sinsin21得sincos2cos2cos4sinsin21.5化简:sin2sin2sin2sin2cos2cos2.答案1解析原式sin2sin2(1sin2)cos2cos2sin2sin2cos2cos2cos2sin2cos2(sin2cos2)sin2cos21.6已知R,sin2cos则tan.答案3或解析因为sin2cos,又sin2cos21,联立解得或故tan,或tan3.7(1)化简;(2)用tan表示,sin2sincos3cos2.解(1)|cos100|cos100.(2),sin2sincos3cos2.二、能力提升8已知tan2,则sin2sincos2cos2等于()AB.CD.答案D解析sin2sincos2cos2,又tan2,故原式.9已知sincos,则tan的值为()A4B4C8D8答案C解析tan.sincos,tan8.10已知直线l的倾斜角是,且sin,则直线l的斜率k.答案解析因为直线l的倾斜角是,所以0,)又因为sin,sin2cos21,所以cos,于是直线l的斜率k.11已知tan,则.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 信息安全服务外包合同
- 参展商服务合同协议书
- 线上客服培训
- 露天矿山承包经营合同
- 股权收购合同出资协议
- 护士门诊礼仪培训
- 农田灌溉合同范本
- 包装设计师习题库及答案
- 艾滋病手术患者安全护理
- 肾衰竭护理图解
- 创造性思维与创新方法Triz版知到章节答案智慧树2023年大连理工大学
- 英语四级仔细阅读练习与答案解析
- 《产业基础创新发展目录(2021年版)》(8.5发布)
- 排水沟土方开挖施工方案
- CAD教程CAD基础教程自学入门教程课件
- 技术合同认定登记培训课件
- 停水停电时的应急预案及处理流程
- 电商部运营助理月度绩效考核表
- DB61∕T 1230-2019 人民防空工程防护设备安装技术规程 第1部分:人防门
- 第12课送你一个书签
- 教学课件:《特种加工(第6版)
评论
0/150
提交评论