中考数学《三角函数》试题选题及解答.doc_第1页
中考数学《三角函数》试题选题及解答.doc_第2页
中考数学《三角函数》试题选题及解答.doc_第3页
中考数学《三角函数》试题选题及解答.doc_第4页
中考数学《三角函数》试题选题及解答.doc_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

中考数学三角函数试题选题及解答一、选择题1.(台州市)一次数学活动中,小迪利用自己制作的测角器测量小山的高度CD.已知她的眼睛与地面的距离为1.6米,小迪在B处测量时,测角器中的AOB60(量角器零度线AC和铅垂线OP的夹角,如图);然后她向小山走50米到达点F处(点B,F,D在同一直线上),这时测角器中的EOP45,那么小山的高度CD约为( )A.68米 B.70米 C.121米 D.123米(注:数据,供计算时选用)2.(泰安市)如图,在ABC中,ACB90,CDAB于D,若AC2,AB3,则tanBCD的值为( )A. B. C. D.3.(天津市)sin45+cos45的值等于( )A. B. C. D.1 4.(扬州市)正方形网格中,AOB如图放置,则cosAOB的值为( )A. B. C. D.25.(舟山市)如图,在高楼前D点测得楼顶的仰角为30o,向高楼前进60米到C点,又测得仰角为45o,则该高楼的高度大约为( ).A.82米 B.163米 C.52米 D.30米6.(杭州市)如图,在高楼前D点测得楼顶的仰角为30,向高楼前进60米到C点,又测得仰角为45,则该高楼的高度大约为( )A.82米 B.163米 C.52米 D.70米7.(怀化市)如图,菱形ABCD的周长为40cm,DEAB,垂足为E,sinA=,则下列结论正确的有( )DE6cm; BE=2cm;菱形面积为60cm2;BD=4cm.A.1个 B.2个 C.3个 D.4个8.(甘肃省) 如图,P是的边OA上一点,且点P的坐标为(3,4), 则sin= ( )A. B. C. D.9.(韶关市)已知sinA=,且A为锐角,则A=( )A.30 B.45 C.60 D.75 二、计算题10.(芜湖市)计算:.11.(成都市)计算:.三、解答题12.(长沙市)如图所示,某超市在一楼至二楼之间安装有电梯,天花板与地面平行,请你根据图中数据计算回答:小敏身高1.78米,她乘电梯会有碰头危险吗?姚明身高2.29米,他乘电梯会有碰头危险吗?(可能用到的参考数值:sin27=0.45,cos27=0.89,tan27=0.51)13.(南宁市)如图所示,点P表示广场上的一盏照明灯.(1)请你在图中画出小敏在照明灯P照射下的影子(用线段表示);(2)若小丽到灯柱MO的距离为4.5米,照明灯P到灯柱的距离为1.5米,小丽目测照明灯P的仰角为55,她的目高QB为1.6米,试求照明灯P到地面的距离(结果精确到0.1米).(参考数据:tan551.428,sin550.819,cos550.574)14.(贵阳市)如图,一枚运载火箭从地面O处发射,当火箭到达A点时,从地面C处的雷达站测得AC的距离是6km,仰角是43.1s后,火箭到达B点,此时测得BC的距离是6.13km,仰角为45.54,解答下列问题:(1)火箭到达B点时距离发射点有多远(精确到0.01km)?(2)火箭从A点到B点的平均速度是多少(精确到0.1km/s)?15.(日照市)万平口大桥近日在我市水上运动训练基地落成,该桥沿东西方向横跨水上运动中心.有一天在运动训练基地泛舟游玩的小明在A处测得大桥最西端的桥墩C在北偏西45o,最东段的桥墩D在北偏东1826.当小明向正北前进了89米到达B处时,又测得桥墩C在北偏西60o,桥墩D在北偏东30o,那么万平口大桥的桥跨长度CD是多少米?(结果精确到0.1米)(参考数据=1.73,tan1826=0.33)16.(宜昌市)如图,为了对我市城区省级文物保护对象-高AC约42米的天然塔(清乾隆五十七年重修)进行保护性维修,工人要在塔顶A和塔底所在地面上的B处之间拉一根铁丝,在BC上的点D处测得塔顶的仰角为43(测倾器DE高1.6米,A,E,B三点在同一条直线上).求BAC的度数和铁丝AB的长.(接头部分的长度忽略不计,结果精确到0.1米.sin430.68,tan430.93)17.(怀化市)九年级(1)班课外活动小组利用标杆测量学校旗杆的高度,已知标杆高度CD=3m,标杆与旗杆的水平距离BD=15m,人的眼睛与地面的高度EF=1.6m,人与标杆CD的水平距离DF=2m,求旗杆AB的高度.18.(芜湖市)如图,在ABC中,AD是BC上的高,tanB=cosDAC.(1)求证:AC=BD;(2)若sinC=,BC=12,求AD的长.19.(乐清中学)如图所示,a是海面上一条南北方向的海防警戒线,在a上点A处有一个水声监测点,另两个监测点B,C分别在A的正东方20 km处和54 km处.某时刻,监测点B收到发自静止目标P的一个声波,8s后监测点A,20 s后监测点C相继收到这一信号.在当时气象条件下,声波在水中的传播速度是1. 5 km/s.(1)设A到P的距离为xkm,用x表示B,C到P 的距离,并求x值;(2)求静止目标P到海防警戒线a的距离(结果精确到0.01 km)。 20.(资阳市)一座建于若干年前的水库大坝的横断面如图所示,其中背水面的整个坡面是长为90米、宽为5米的矩形. 现需将其整修并进行美化,方案如下: 将背水坡AB的坡度由1:0.75改为1:; 用一组与背水坡面长边垂直的平行线将背水坡面分成9块相同的矩形区域,依次相间地种草与栽花.(1)求整修后背水坡面的面积;(2)如果栽花的成本是每平方米25元,种草的成本是每平方米20元,那么种植花草至少需要多少元?21.(安徽省)如图,某幢大楼顶部有一块广告牌CD,甲乙两人分别在相距8米的A、B两处测得D点和C点的仰角分别为45和60,且A、B、E三点在一条直线上,若BE=15米,求这块广告牌的高度.(取1.73,计算结果保留整数) 22.(郴州市)如图,小明与小华爬山时遇到一条笔直的石阶路,路的一侧设有与坡面AB平行的护栏MN(MN=AB).小明量得每一级石阶的宽为32cm,高为24cm,爬到山顶后,小华数得石阶一共200级,如果每一级石阶的宽和高都一样,且构成直角,请你帮他们求出坡角BAC的大小(精确到度)和护栏MN的长度.以下数据供选用:tan3652120.7500,tan53748=1.3333,sin365212=0.6000,sin53748=0.8000. 23.(成都市)如图,甲、乙两栋高楼的水平距离BD为90米,从甲楼顶部C点测得乙楼顶部A点的仰角为30,测得乙楼底部B点的俯角为60,求甲、乙两栋高楼各有多高?(计算过程和结果都不取近似值)24.(怀化市)九年级(1)班课外活动小组利用标杆测量学校旗杆的高度,已知标杆高度CD3m,标杆与旗杆的水平距离BD=15m,人的眼睛与地面的高度EF=1.6m,人与标杆CD的水平距离DF=2m,求旗杆AB的高度.25.(乐山市)如图,小山上有一棵树.现有测角仪和皮尺两种测量工具,请你设计一种测量方案,在山脚水平地面上测出小树顶端A到水平地面的距离AB.要求:(1)画出测量示意图;(2)写出测量步骤(测量数据用字母表示);(3)根据(2)中的数据计算AB.26.(潜江市)经过江汉平原的沪蓉(上海成都)高速铁路即将动工.工程需要测量汉江某一段的宽度.如图,一测量员在江岸边的A处测得对岸岸边的一根标杆B在它的正北方向,测量员从A点开始沿岸边向正东方向前进100米到达点C处,测得ACB=68. (1)求所测之处江的宽度(sin680.93,cos680.37,tan682.48.);(2)除(1)的测量方案外,请你再设计一种测量江宽的方案,并在图中画出图形.27.(自贡市)如图所示,我市某中学数学课外活动小组的同学,利用所学知识去测量沱江流经我市某段的河宽.小凡同学在点A处观测到对岸C点,测得CAD45,又在距A处60米远的B处测得CBA30,请你根据这些数据算出河宽是多少?(精确到0.01m)28.(苏州市)某学校体育场看台的侧面如图阴影部分所示,看台有四级高度相等的小台阶.已知看台高为l.6米,现要做一个不锈钢的扶手AB及两根与FG垂直且长为l米的不锈钢架杆AD和BC(杆子的底端分别为D,C),且DAB=66. 5.(1)求点D与点C的高度差DH;(2)求所用不锈钢材料的总长度l(即AD+AB+BC,结果精确到0.1米).(参考数据:sin66.50.92,cos66.50.40,tan66.52.30)29.(泰州市)2007年5月17日我市荣获“国家卫生城市称号”.在“创卫”过程中,要在东西方向M,N两地之间修建一条道路.已知:如图C点周围180m范围内为文物保护区,在MN上点A处测得C在A的北偏东60方向上,从A向东走500m到达B处,测得C在B的北偏西45方向上.(1)MN是否穿过文物保护区?为什么?(参考数据:)(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?30.(威海市)如图,一条小船从港口A出发,沿北偏东40方向航行20海里后到达B处,然后又沿北偏西30方向航行10海里后到达C处.问此时小船距港口A多少海里?(结果精确到1海里)友情提示:以下数据可以选用:sin400.6428,cos400.7660,tan400.8391,1.732.31.(泉州市)如图,在电线杆离地面6米高的C处向地面拉缆绳,缆绳和地面成63角,求缆绳AC的长(精确到0.01米).32.(鄂尔多斯市)如图,A,B两镇相距60km,小山C在A镇的北偏东60方向,在B镇的北偏西30方向.经探测,发现小山C周围20km的圆形区域内储有大量煤炭,有关部门规定,该区域内禁止建房修路.现计划修筑连接A,B两镇的一条笔直的公路,试分析这条公路是否会经过该区域?33.(呼和浩特市)如图,在小岛上有一观察站A.据测,灯塔B在观察站A北偏西45的方向,灯塔C在B正东方向,且相距10海里,灯塔C与观察站A相距海里,请你测算灯塔C处在观察站A的什么方向?34.(聊城市)美丽的东昌湖赋于江北水城以灵性,周边景点密布.如图,A,B为湖滨的两个景点,C为湖心一个景点.景点B在景点C的正东,从景点A看,景点B在北偏东75方向,景点C在北偏东30方向.一游客自景点A驾船以每分钟20米的速度行驶了10分钟到达景点C,之后又以同样的速度驶向景点B,该游客从景点C到景点B需用多长时间(精确到1分钟)?.参考答案一、选择题1.B 2.B 3. A 4. A 5.A 6.A 7. 8.A 9.A二、计算题10.解:原式=.11.解:原式.三、解答题12.解:作CDAC交AB于D,则CAB27,在RtACD中,CDACtanCAB =40.51=2.04(米),所以小敏不会有碰头危险,姚明则会有碰头危险.13.解:(1)如图,线段AC是小敏的影子. (2)过点Q作QEMO于E,过点P作PFAB于F,交EQ于点D,则PFEQ.在RtPDQ中,PQD=55,DQ=EQ-ED=4.5-1.5=3(米).,PD=3tan554.3(米). DF=QB=1.6(米), PF=PD+DF=4.3+1.6=5.9(米).答:照明灯到地面的距离为5.9米.14.解:(1)在RtOCB中,OB=6.13sin45.544.375(km).答:火箭到达B点时距发射点约4.38km. (2)在RtOCA中,OA=6sin43=4.09(km),v=(OB-OA)t=(4.38-4.09)10.3(km/s).答:火箭从A点到B点的平均速度约为0.3km/s.15. 解:如图,延长AB交CD于点P,则APCD,设CP=x(米).在RtACP中,CAP=45,AP=CP=x.在RtBCP中,CBP=60, BP=CPcot60=x.又AP-BP=89,(1-)x89.解之,得x=. 在RtBPD中,PBD=30,PD= BPtan30=x=x.CD=CP+PD=x=280.6(米).答:万平口大桥的桥跨长度CD约为280.6米. 16.解:BCEF,AEFB43.ACB90,BAC904347.在RtABC中,AB42sin43(5分)420.6861.8(米),答:BAC47,铁丝的长度是61.8米.17.解:CDFB,ABFB,CDAB.CGEAHE. .即,.AH11.9.ABAHHBAHEF11.91.613.5(m).18.解:(1)AD是BC上的高,ADBC.ADB=90,ADC=90. 在RtABD和RtADC中,cosDAC=,又已知tanB=cosDAC,.AC=BD. (2)在RtADC中, ,故可设AD=12k,AC=13k. BC=BD+CD,又AC=BD,BC=13k+5k=18k. 由已知BC=12, 18k=12.k=.AD=12k=12=8. 19.解:(1)依题意,PAPB=1. 5 8=12 (km),PCPB=1.520=30(km ).因此 PB(x一12)km,PC=(18x)km. 在PAB中,AB= 20 km,. 同理,在PAC中,.由于cosPAB=cosPAC,即. 解得(km). (2)作PDa,垂足为D. 在RtPDA中,PD =PAcosAPD=PAcosPAB= .答:静止目标P到海防警戒线a的距离约为17.71km.20.解:(1) 作AEBC于E. 原来的坡度是10.75,.设AE=4k,BE=3k, AB=5k.又AB=5米,k=1,则AE=4米. 设整修后的斜坡为AB,由整修后坡度为1:,有,ABE=30. AB2E8米. 整修后背水坡面面积为908=720米2. (2)将整修后的背水坡面分为9块相同的矩形,则每一区域的面积为80米2.解法一: 要依次相间地种植花草,有两种方案:第一种是种草5块,种花4块,需要20580+25480=16000元;第二种是种花5块,种草4块,需要20480+25580=16400元. 应选择种草5块、种花4块的方案,需要花费16000元. 解法二:要依次相间地种植花草,则必然有一种是5块,有一种是4块,而栽花的成本是每平方米25元,种草的成本是每平方米20元,两种方案中,选择种草5块、种花4块的方案花费较少.即需要花费20580+25480=16000元. 21.解:AB8,BE15,AE23.在RtAED中,DAE45,DEAE23.在RtBEC中,CBE60,CEBEtan60.CDCEDE232.953,即这块广告牌的高度约为3米.22.解:AC0.3220064(米),BC0.2420048(米).tanBAC= =0.75,BAC37.MNAB80(米). 答:坡脚约,护栏长80米.23.解:作CEAB于点E.CEDB,CDAB,且CDB90,四边形BECD是矩形.CDBE,CEBD.在RtBCE中,60,CEBD90米.,BECEtan 90tan60=90 (米).CD=BE=90(米).在Rt ACE中,30,CE90米.,AECEtan 90tan30=90=30(米).AB=AE+BE=+90=120(米).答:甲楼高为90米,乙楼高为120米.24.解:CDFB,ABFB,CDAB. CGEAHE. ,即.AH11.9. ABAHHBAHEF11.91.613.5(m). 25.解:(1)测量图案(示意图)如图示.(2)测量步骤:第一步:在地面上选择点C安装测角仪,测得此时树尖A的仰角AHE=.第二步:沿CB前进到点D,用皮尺量出C,D之间的距离CDm.第三步:在点D安装测角仪,测得此时树尖A的仰角AFE.第四步:用皮尺测出测角仪的高h.(3)计算:令AE=x,则,得.又,得. HE-FE=HF=CD=m,.解得.+h.26.解:(1)在RtBAC中,ACB68,ABACtan681002.48=248(米).答:所测之处江的宽度约为248米(2)从所画出的图形中可以看出是利用三角形全等、三角形相似、解直角三角形的知识来解决问题的,只要正确即可得分.27.解:如图,过C作CEAB于E,则CE为河宽.设CEx(米),于是BEx60(米).在RtBCE中,tan30,xx60.x30(1) 81.96(米).答:河宽约为81.96米.28.解:(1)DH=1.6=l.2(米).(2)过B作BMAH于M,则四边形BCHM是矩形.MH=BC=1, AM=AH-MH=1+1.2l=l.2.在RtAMB中,A=66.5, AB=(米).S=AD+AB+BC1+3.0+1=5.0(米).29.解:(1)过C作CHAB于点H,设CHxm,则AH=x,HB=x.AH+HB=AB,x+x=500.x=183180.不会穿过保护区.(2)设原计划完成这项工程需要

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论