




已阅读5页,还剩36页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第3讲导数的简单应用与定积分,体验真题,2(2017浙江)函数yf(x)的导函数yf(x)的图像如图所示,则函数yf(x)的图像可能是,解析观察导函数f(x)的图像可知,f(x)的函数值从左到右依次为小于0,大于0,小于0,大于0,对应函数f(x)的增减性从左到右依次为减、增、减、增观察选项可知,排除A,C.,如图所示,f(x)有3个零点,从左到右依次设为x1,x2,x3,且x1,x3是极小值点,x2是极大值点,且x20,故选项D正确故选D.答案D,(2)在同一平面直角坐标系中画出y2x和yx33x的图像,如图所示,当a1时,f(x)无最大值;当1a2时,f(x)max2;当a2时,f(x)maxa33a.综上,当a(,1)时,f(x)无最大值答案(1)2(2)(,1),1考查形式题型:选择、填空、解答题;难度:中档或偏下2命题角度(1)根据导数几何意义求切线方程,或根据切线方程求参数;(2)考查导函数符号与函数单调性的关系,含参数函数单调区间的确定以及根据函数单调性确定参数的取值范围等;,感悟高考,(3)考查函数极值、最值的综合应用;(4)对定积分的考查主要是求平面区域的面积3素养目标提升数学运算、直观想象、逻辑推理素养.,1求曲线yf(x)的切线方程的三种类型及方法(1)已知切点P(x0,y0),求yf(x)过点P的切线方程(2)已知切线的斜率为k,求yf(x)的切线方程:设切点P(x0,y0),通过方程kf(x0)解得x0,再由点斜式写出方程,热点一导数与定积分的几何意义(基础练通),(3)已知切线上一点(非切点),求yf(x)的切线方程:设切点P(x0,y0),利用导数求得切线斜率f(x0),然后由斜率公式求得切线斜率,列方程(组)解得x0,再由点斜式或两点式写出方程2利用定积分求平面图形的面积正确画出几何图形,结合图形位置,准确确定积分区间以及被积函数,从而得到面积的积分表达式,再利用微积分基本定理求出积分值,1(2018宁波三模)已知yf(x)是可导函数,如图,直线ykx2是曲线yf(x)在x3处的切线,令g(x)xf(x),g(x)是g(x)的导函数,则g(3)A1B0C2D4,通关题组,答案B,2(2018全国卷)设函数f(x)x3(a1)x2ax.若f(x)为奇函数,则曲线yf(x)在点(0,0)处的切线方程为Ay2xByxCy2xDyx解析因为函数f(x)x3(a1)x2ax为奇函数,所以f(x)f(x),所以(x)3(a1)(x)2a(x)x3(a1)x2ax,所以2(a1)x20,因为xR,所以a1,所以f(x)x3x,所以f(x)3x21,所以f(0)1,所以曲线yf(x)在点(0,0)处的切线方程为yx.故选D.答案D,热点二利用导数研究函数的单调性(多维贯通)导数与函数单调性的关系(1)f(x)0是f(x)为增函数的充分不必要条件,如函数f(x)x3在(,)上单调递增,但f(x)0.(2)f(x)0是f(x)为增函数的必要不充分条件,当函数在某个区间内恒有f(x)0时,f(x)为常数函数,函数不具有单调性,例1,命题点2由函数单调性求参数范围(1)(2018厦门模拟)若函数f(x)2x2lnx在其定义域内的一个子区间(k1,k1)内不是单调函数,则实数k的取值范围是_(2)(2018安庆二模)若函数f(x)x24exax在R上存在单调递增区间,则实数a的取值范围为_,例2,(2)因为f(x)x24exax,所以f(x)2x4exa.由题意,f(x)2x4exa0,即a0时,应通过求根公式求出其根(2)涉及含参数函数的最值时,也要通过函数的极值点与所给区间的关系分类讨论后确定最值,突破练2(20
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 延边大学《环境流体力学》2023-2024学年第二学期期末试卷
- 江苏省无锡市玉祁初级中学2025届初三下学期中考试生物试题含解析
- 湖南省长沙市2025届高三下学期返校英语试题含解析
- 辽宁经济职业技术学院《涉外礼仪》2023-2024学年第二学期期末试卷
- 温州医科大学《电影批评》2023-2024学年第一学期期末试卷
- 食品经营许可证办理流程
- 2025设备租赁合同纠纷民事诉状起诉书
- 2025年招标师考试合同管理模拟题
- 2025塑料管材购销合同范本
- 给药治疗与护理
- 2024年泉州实验中学初一新生入学考试数学试卷
- 人工智能在航班调度中的未来应用探讨
- 内蒙古自治区赤峰第四中学2024-2025学年高一下学期4月月考历史试题(含答案)
- 2025-2030中国保健品行业市场深度调研及竞争格局与投资研究报告
- 2025年江苏省无锡市锡山区中考英语一模试卷
- (二模)衢州、丽水、湖州2025年4月三地市高三教学质量检测 语文试卷(含答案解析)
- 宜昌市社区工作者招聘真题2024
- 水下潜水艇课件
- 糖尿病酮症酸中毒护理
- 36 阶段统计项目风险管理表甘特图
- 2025-2030中国电信增值行业运行状况与发展前景预测研究报告
评论
0/150
提交评论