




已阅读5页,还剩16页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 / 21 2017 高考数学一轮考点训练 -立体几何(有答案) 本资料为 WoRD 文档,请点击下载地址下载全文下载地址 第八章 立体几何 考纲链接 1.空间几何体 (1)认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构 (2)能画出简单空间图形 (长方体、球、圆柱、圆锥、棱柱等的简易组合 )的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图 (3)会用平行投影方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式 (4)了 解球、棱柱、棱锥、台的表面积和体积的计算公式 2点、直线、平面之间的位置关系 (1)理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理: 公理 1:如果一条直线上的两点在同一个平面内,那么这条直线在此平面内 公理 2:过不在一条直线上的三点,有且只有一个平面 2 / 21 公理 3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线 公理 4:平行于同一条直线的两条直线平行 定理:空间中如果两个角的两条边分别对应平行,那么这两个角相等或互补 (2)以立体几何的上述定义、公理和定理为出发点,认 识和理解空间中线面平行、垂直的有关性质与判定定理 理解以下判定定理: 平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行 一个平面内的两条相交直线与另一个平面平行,则这两个平面平行 一条直线与一个平面内的两条相交直线垂直,则该直线与此平面垂直 一个平面过另一个平面的垂线,则两个平面垂直 理解以下性质定理,并加以证明: 如果一条直线与一个平面平行,那么过该直线的任一个平面与此平面的交线和该直线平行 两个平面平行, 则任意一个平面与这两个平面相交所得的交线相互平行 垂直于同一个平面的两条直线平行 两个平面垂直,则一个平面内垂直于交线的直线与另一个3 / 21 平面垂直 (3)能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题 3空间直角坐标系 (1)了解空间直角坐标系,会用空间直角坐标表示点的位置 (2)会简单应用空间两点间的距离公式 空间几何体的结构、三视图和直观图 1棱柱、棱锥、棱台的概念 (1)棱柱:有两个面互相 _,其余各面都是 _,并且每相邻两个四边形的公共边都互相 _,由这些面所围成的多面体叫做棱柱 注:棱柱又分为斜棱柱和直棱柱侧棱与底面不垂直的棱柱叫做斜棱柱;侧棱与底面垂直的棱柱叫做直棱柱;底面是正多边形的直棱柱叫做正棱柱 (2)棱锥:有一个面是 _,其余各面都是有一个公共顶点的 _,由这些面所围成的多面体叫做棱锥 注:如果棱锥的底面是正多边形,且它的顶点在过底面中心且与底面垂直的直线上,则这个棱锥叫做正棱锥 (3)棱台:用一个平行于棱锥底面的平面去截棱锥,底面与4 / 21 截 面之间的部分,叫做棱台 注:由正棱锥截得的棱台叫做正棱台 2. 棱柱、棱锥、棱台的性质 (1)棱柱的性质 侧棱都相等,侧面是 _;两个底面与平行于底面的截面是 _的多边形;过不相邻的两条侧棱的截面是 _;直棱柱的侧棱长与高相等且侧面、对角面都是 _ (2)正棱锥的性质 侧棱相等,侧面是全等的 _;棱锥的高、斜高和斜高在底面上的射影构成一个 _;棱锥的高、侧棱和侧棱在底面 上的射影也构成一个 _;斜高、侧棱及底面边长的一半也构成一个 _;侧棱在底面上的射影、斜高在底面上的射影及底面边长的一半也构成一个 _ (3)正棱台的性质 侧面是全等的 _;斜高相等;棱台的高、斜高和两底面的边心距组成一个 _;棱台的高、侧棱和两底面外接圆的半径组成一个 _;棱台的斜高、侧棱和两底面边长的一半也组成一个 _ 3圆柱、圆锥、圆台 (1)圆柱、 圆锥、圆台的概念 5 / 21 分别以 _的一边、 _的一直角边、 _中垂直于底边的腰所在的直线为旋转轴,其余各边旋转一周而形成的曲面所围成的几何体分别叫做圆柱、圆锥、圆台 (2)圆柱、圆锥、圆台的性质 圆柱、圆锥、圆台的轴截面分别是 _、 _、_;平行于底面的截面都是 _ 4球 (1)球面与球的概念 以半圆的 _所在直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体,简称球半圆的圆心叫做球的 _ (2)球的截面性质 球心和截面圆心的连线 _截面;球心到截面的距离 d与球的半径 R 及截面圆的半径 r 的关系为 _ 5平行投影 在一束平行光线照射下形成的投影,叫做 _平行投影的投影线互相 _ 6空间几何体的三视图、直观图 (1)三视图 空间几何体的三视图是用正投影得到的,在这种投影下,与投影面平行的平面图形留下的影子与平面图形的形状和大小是完全相同的三视图包括 _、 _、_ 6 / 21 三视图尺寸关系口诀: “ 长对正,高平齐,宽相等 ” 长对正指正视图和俯视图长度相等,高平齐指正视图和侧 (左 )视图高度要对齐,宽相等指俯视图和侧 (左 )视图的宽度要相等 (2)直观图 空间几何体的直观图常用斜二测画法来画,其规则是: 在已知图形所在空间中取水平面,在水平面内作互相垂直的轴 ox, oy,再作 oz 轴,使 xoz _且 yoz _ 画直观图时,把 ox, oy, oz 画成对应的轴 ox , oy ,oz ,使 xoy _, xoz _ xoy 所确定的平面表示水平面 已知图形中,平行于 x 轴、 y 轴或 z 轴的线段,在直观图中分别画成 _x 轴、 y 轴或 z 轴的线段,并使它们和所画坐标轴的位置关系与已知图形中相应线段和原坐标轴的位置关系相同 已知图形中平行于 x 轴和 z 轴的线段,在直观图中保持长度不变,平行于 y 轴的线段,长度为原来的 _ 画图完成后,擦去作为辅助线的坐标轴,就得到了空间图形的直观图 自查自纠: 1 (1)平行 四边形 平行 (2)多边形 三角形 7 / 21 2 (1)平行四边形 全等 平行四边形 矩形 (2)等腰三角形 直角三角形 直角三角形 直角三角形 直角三角形 (3)等腰梯形 直角梯形 直角梯形 直角梯形 3 (1)矩形 直角三角形 直角梯形 (2)矩形 等腰三角形 等腰梯形 圆 4 (1)直径 球心 (2)垂直于 d R2 r2 5平行投影 平行 6 (1) 正 (主 )视图 侧 (左 )视图 俯视图 (2)90 90 45( 或 135) 90 平行于 一半 给出下列四个命题: 有两个侧面是矩形的棱柱是直棱柱; 侧面都是等腰三角形的棱锥是正棱锥; 侧面都是矩形的直四棱柱是长方体; 若有两个侧面垂直于底面,则该四棱柱为直四棱柱 其中所有错误命题的序号是 ( ) A B. c D. 解:认识棱柱一般要从侧棱与底面的垂直与否和底面多边形的形状两方面去分析,故 错误,对等腰三角形的腰是否8 / 21 为侧棱未作说明,故 错误,平行六面体的两个相对侧面也可能与底面垂直且互相平行,故 错误故选 D. 以下关于几何体的三视图的论述中,正确的是 ( ) A球的三视图总是三个全等的圆 B正方体的三视图总是三个全等的正方形 c水平放置的正四面体的三视图都是正三角形 D水平放置的圆台的俯视图是一个圆 解:几何体的三视图要考虑视角,只有球无论选择怎样的视角,其三视图总是三个全等的圆故选 A. (XX北京 )某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为 ( ) A 2 解:由题中三视图知,此四棱锥的直观图如图所示, 其中侧棱 SA 底面 ABcD,且底面是边长为 1 的正方形, SA 1, 四棱锥最长棱的棱长为 Sc 3,故选 c. 用一张 4cm8cm 的矩形硬纸卷成圆柱的侧面,则圆柱轴截面的面积为 _cm2(接头忽略不计 ) 解:以 4cm 或 8cm 为底面周长,所得圆柱的轴截面面积均为32cm2 ,故填 32. 已知正 ABc 的边长为 a,那么 ABc 的平面直观图9 / 21 ABc 的面积为 _ 解:如图所示是实际图形和直观图 由图可知, AB AB a, oc 12oc 34a,在图中作cDAB ,垂足为 D ,则 cD 22oc 68a. SABc 12ABcD 12a68a 616a2.故填 616a2. 类型一 空间几何体的结构特征 (XX全国课标 ) 如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是( ) A三棱锥 B三棱柱 c四棱锥 D四棱柱 解:该几何体的三视图由一个三角形,两个矩形组成,经分析可知该几何体为三棱柱,故选 B. 点拨: 解决此类问题的关键是根据几何体的三视图判断几何体的结构特征常见的有以下几类: 三视图为三个三角形,对应的几何体为三棱锥; 三视图 为两个三角形,一个四边形,对应的几何体为四棱锥; 三视图为两个三角形,一个圆,10 / 21 对应的几何体为圆锥; 三视图为一个三角形,两个四边形,对应的几何体为三棱柱; 三视图为三个四边形,对应的几何体为四棱柱; 三视图为两个四边形,一个圆,对应的几何体为圆柱 某几何体的正视图和侧视图均如图 1 所示,则该几何体的俯视图不可能是 ( ) 解: D 选项的正视图应为如图所示的图形故选 D. 类型二 空间几何体的三视图 如图所示的三个直角三角形是一个体积为 20cm3 的几何体的三视图,则 h _cm. 解:由三视图可知,该几何体为三棱锥,此三棱锥的底面为直角三角形,直角边长分别为 5cm, 6cm,三棱锥的高为hcm, 则三棱锥的体积为 V 131256h 20,解得 h 4cm.故填 4. 点拨: 对于空间几何体的考查,从内容上看,锥的定义和相关性质是基础,以它们为载体考查三视图、体积和棱长是重点本11 / 21 题给出了几何体的三视图,只要掌握三视图的画法 “ 长对正、高平齐、宽相等 ” ,不难将其还原得到三棱锥 (XX全国 ) 圆柱被一个平面截去一部分后与半球 (半径为 r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示若该几何体的表面积为 16 20 ,则r ( ) A 1B 2c 4D 8 解:由图可知该几何体由半个圆柱和半个球体组合而成,则S 表 4r212 12r22 r2r 2r2r 16 20 ,解得 r 2.故选 B. 类型三 空间多面体的直观图 如图是一个几何体的三视图,用斜二测画法画出它的直观图 解:由三视图知该几何体是一个简单组合体,它的下部是一个正 四棱台,上部是一个正四棱锥 画法: (1)画轴如图 1,画 x 轴、 y 轴、 z 轴,使 xoy 45 , xoz 90. 图 1 (2)画底面利用斜二测画法画出底面 ABcD,在 z 轴上截取12 / 21 o 使 oo 等于三视图中相应高度,过 o 作 ox 的平行线 ox , oy 的平行线 oy ,利用 ox 与 oy 画出底面 ABcD. (3)画正四棱锥顶点在 oz 上截取点 P,使 Po 等于三视图中相应的高度 (4)成图连接 PA , PB , Pc , PD , AA , BB , cc ,DD ,整理得到三视图表示的几何 体的直观图如图 2 所示 图 2 点拨: 根据三视图可以确定一个几何体的长、宽、高,再按照斜二测画法,建立 x 轴、 y 轴、 z 轴,使 xoy 45 , xoz 90 ,确定几何体在 x 轴、 y 轴、 z 轴方向上的长度,最后连线画出直观图 已知一个四棱锥的高为 3,其底面用斜二测画法所画出的水平放置的直观图是一个边长为 1 的正方形,则此四棱锥的体积为 ( ) 22 解:因为四棱锥的底面直观图是一个边长为 1 的正方形,该正方形的对角线长为 2,根据斜二测画法的规则,原图底面的底边长为 1,高为直观图中正方形 的对角线长的两倍,即22,则原图底面积为 S 22.因此该四棱锥的体积为 V 13Sh13 / 21 13223 22.故选 D. 类型四 空间旋转体的直观图 用一个平行于圆锥底面的平面截这个圆锥,截得圆台上、下底面的面积之比为 116 ,截去的圆锥的母线长是 3cm,求圆台的母线长 解:设圆台的母线长为 l,截得圆台的上、下底面半径分别为 r, 4r. 根据相似三角形的性质得, 33 l r4r,解得 l 9. 所以,圆台的母线长为 9cm. 点拨: 用平行于底面的平面去截柱、锥、台等几何体,注意抓住截面的性质 (与底面全等或相似 ),同时结合旋转体中的轴截面(经过旋转轴的截面 )的几何性质,利用相似三角形中的相似比,设相关几何变量列方程求解 (XX湖南 )一块石材表示的几何体的三视图如图所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于 ( ) A 1B 2c 3D 4 解:该几何体为一直三棱柱,底面是边长为 6, 8, 10 的直14 / 21 角三角形,侧棱为 12,其最大球的半径为底面直角三角形内切圆的半径 r,由等面积法可得 12(6 8 10)r1268 ,得 r 2.故选 B. 1在研究圆柱、圆锥、圆台的相关问题时,主要方法就是研究它们的轴截面,这是因为在轴截面中容易找到这些几何体的有关元素之间的位置关系以及数量关系 2建议对下列一些具有典型意义的重要空间图形的数量关系予以推证并适当记忆 (1)正多面体 () 正四面体就是棱长都相等的三棱锥,正六面体就是正方体,连接正方体六个面的中心,可得到一个正八面体,正八面体可以看作是由两个棱长都相等的正四棱锥拼接而成 棱长为 a 的正四面体中: 斜高为 32a; 高为 63a; 对棱中点连 线长为 22a; 外接球的半径为 64a,内切球的半径为 612a; 正四面体的表面积为 3a2,体积为 212a3. () 如图,在棱长为 a 的正方体 ABcDA1B1c1D1 中,连接 A1B, Bc1, A1c1, Dc1, DA1, DB,可以得到一个棱长为2a 的正四面体 A1BDc1,其体积为正方体体积的 13. 15 / 21 () 正方体与球有以下三种特殊情形:一是球内切于正方体;二是球与正方体的十二条棱相切;三是球外接于正方体它们的相应轴截面如图所示 (正方体的棱长为 a,球的半径为 R) (2)长 方体的外接球 () 长、宽、高分别为 a, b, c 的长方体的体对角线长等于外接球的直径,即 a2 b2 c2 2R. () 棱长为 a 的正方体的体对角线长等于外接球的直径,即3a 2R. 3三视图的正 (主 )视图、侧 (左 )视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线,主视图反映了物体的长度和高度;俯视图反映了物体的长度和宽度;左视图反映了物体的宽度和高度由此得到:主俯长对正,主左高平齐,俯左宽相等 4一个平面图形在斜二测画法下的直观图与原图形相比,有 “ 三变、三不变 ” 三 变:坐标轴的夹角改变,与 y 轴平行线段的长度改变 (减半 ),图形改变 三不变:平行性不变,与 x 轴平行的线段长度不变,相对位置不变 16 / 21 1由平面六边形沿某一方向平移形成的空间几何体是( ) A六棱锥 B六棱台 c六棱柱 D非棱柱、棱锥、棱台的一个几何体 解:平面六边形沿某一方向平移形成的空间几何体符合棱柱的定义,故选 c. 2下列结论正确的是 ( ) A各个面都是三角形的几何体是三棱锥 B以三角形的一条边所在直线为旋转轴,其余两边绕旋转轴旋转形成的曲面所围成 的几何体叫圆锥 c棱锥的侧棱长与底面多边形的边长都相等,则该棱锥可能是六棱锥 D圆锥的顶点与底面圆周上的任意一点的连线都是母线 解: A 错误,如图 1 是由两个相同的三棱锥叠放在一起构成的几何体,它的各个面都是三角形,但它不是三棱锥; B 错误,如图 2,若 ABc 不是直角三角形,或 ABc 是直角三角形但旋转轴不是直角边,所得的几何体都不是圆锥; c 错误,若该棱锥是六棱锥,由题设知,它是正六棱锥易证正六棱锥的侧棱长必大于底面边长,这与题设矛盾;易知 D 正确故选 D. 17 / 21 3将一个等腰梯形绕着它的较长的底边所 在直线旋转一周,所得的几何体包括 ( ) A一个圆台、两个圆锥 B两个圆台、一个圆柱 c两个圆台、一个圆锥 D一个圆柱、两个圆锥 解:把等腰梯形分割成两个直角三角形和一个矩形,由旋转体的定义可知所得几何体包括一个圆柱、两个圆锥故选 D. 4沿一个正方体三个面的对角线截得的几何体如图所示,则该几何体的侧视图为 ( ) 解:观察可知,该几何体的侧视图为正方形,且 AD1 为实线,故选 B. 5若某几何体的三视图如图所示,则这个几何体的直观图可以是 ( ) 解: A, B 的正视图不符合 要求, c 的俯视图显然不符合要求,故选 D. 6 (XX课标 ) 如图,网格纸上小正方形的边长为 1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为 ( ) 18 / 21 A 62B 42c 6D 4 解法一:如图甲,设辅助正方体棱长为 4,三视图对应的多面体为三棱锥 DABc,最长的棱为 AD 6. 解法二:将三视图还原为三棱锥 DABc,如图乙,易知侧面 DBc 底面 ABc.点 D 在底面 ABc 的射影点 o 是 Bc 的中点, ABc 为直角三角形 AB 4, Bo 2, Ao 25, Do底面 ABc, DoAo , Do 4, 最长的棱 AD 20 16 6.故选 c. 7已知某一多面体内接于球构成一个简单组合体,该组合体的正视图、侧视图、俯视图均如图所示,且图中的四边形是边长为 2 的正方形,则该球的半径是 _ 解:由三视图可知该组合体为球内接棱长为 2 的正方体, 正方体的体对角线为球的直径,即 2r 22 22 22 23, r 3.故填 3. 8若一个螺栓的底面是正六边形,它的正 (主 )视图和俯视图如图所示,则它的体积是 _ 解:由三视图知,该螺栓的上部是一个底面半径为,高为 2的圆柱,下部是底面边长为 2,高为的正六棱柱,故体积 V19 / 21 2 63422 93 3225. 故填 93 3225. 9在四棱锥 PABcD 中,底面为正方形, Pc 与底面 ABcD垂直该四棱锥的正视图和侧视图如图所示,它们是腰长为6cm 的全等的等腰直角三角形 (1)根据所给的正视图、侧视图,画出相应的俯视图,并求出该俯视图的面积; (2)求 PA 的长度 解: (1)该四棱锥的俯视图为边长为 6cm 的正方形,如图,其面积为 36cm2. (2)在正方形 ABcD 中,易得 Ac 62cm, Pc 面 ABcD,PcAc. 在 RtAcP 中, PA Pc2 Ac2 62( 62) 2 63cm. 10如图是某几何体的三
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 终止服务协议合同模板
- 二零二五离婚协议书离婚程序介绍
- 合伙合伙协议书
- 二零二五版国际货物买卖合同中的装运条款
- 二零二五承包茶馆经营合同
- 美容师聘用标准合同范例
- 双方合作的保密标准协议5条
- 知识产权保护法培训课件
- 公司增资扩股协议书二零二五年
- 2024年农业经理人考试基础知识体系试题及答案
- 公文写作与处理课件
- 2025届高三部分重点中学3月联合测评(T8联考)地理试卷(河北版含答案)
- 第5.2课《飞向太空的航程》(教学课件)-【中职专用】高一语文同步课堂
- 2025-2030中国热电偶线行业市场发展趋势与前景展望战略分析研究报告
- DB50-T 1731-2024 工贸企业检维修作业安全规范
- 机动车检测站安全生产培训
- 2025年河南机电职业学院单招职业技能测试题库及答案一套
- 2024安全与韧性术语
- SWITCH塞尔达传说旷野之息-1.6金手指127项修改使用说明教程
- 一年级上册科学课件-1.3 观察叶(3) l 教科版 (共14张PPT)
- 40万吨年NaCl蒸发工段设计——毕业设计
评论
0/150
提交评论