已阅读5页,还剩8页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
对偶理论,2,最大最小对偶,目标函数:,x方的目标是无论y怎样,都应使F越小越好; y方的目标是无论x怎样,都应使F越大越好;,立于不败之地的决策方法,保守主义决策,相关结论:,一对对偶问题,弱对偶定理,对偶间隙,3,最大最小对偶举例博弈,4,最大最小对偶,鞍点条件: 对,相关结论:,弱对偶定理,对偶间隙,若有点,则称(x*,y*)满足鞍点条件。,强对偶定理,满足鞍点条件。,5,原规划:,Lagrange对偶,Lagrange函数,Lagrange对偶,弱对偶性:,弱对偶定理,对偶间隙,原规划,凹函数,6,Lagrange对偶举例,7,像集,8,9,10,连续可微凸规划:,强对偶定理:连续可微凸规划,满足一约束规格,则,Lagrange对偶的强对偶定理,f、g可微凸,h线性,1):若原问题有解,则对偶问题也有解;,2):若原问题与对偶问题分别有可行解,则他们是最优解的充分必要条件是他们对应相同的目标值(对偶间隙为0).,证1):即证可微凸规划的最优解,与其KKT条件的乘子,满足鞍点条件!,证2):利用鞍点条件可得。,参阅Nonlinear Programming-Theory and Algorithm第6章 M. S. Bazaraa & C. M. Shetty(图书馆有中译本),3):对偶问题无上界,则原问题不可行;原问题无下界,则对偶问题不可行。,11,连续可微凸规划:,Wolfe对偶:,Wolfe对偶,f、g可微凸,h线性,1):若原问题有解,则对偶问题也有解;,2):若原问题与对偶问题分别有可行解,则他们是最优解得充分必要条件是他们对应相同的目标值(对偶间隙为0).,Lagrange函数,Wolfe对偶定理:连续可微凸规划,满足一约束规格,则,12,凸规划对偶举例(Q正定),二次规划(Q正定),推广一:,推广二:,Lagrange对偶,13,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 谈军训心得体会(33篇)
- 食品安全自检自查制度
- 中专自我总结范文3篇
- 西湖导游词600字(32篇)
- 山东省聊城市2024-2025学年高一上学期11月期中物理试题
- 江西省赣州市十八县二十四校2024-2025学年高三上学期期中考试英语试题(含解析)
- 世界的海陆气候与居民-2024年中考地理总复习易混易错题(原卷版)
- 语文教学论教案 第一章 语文课程的性质、理念及目标
- 个人分期还款协议范本
- 企业贷款担保格式
- 2024-2030年狂犬疫苗行业市场深度分析及发展策略研究报告
- 《基因指导蛋白质的合成》(第 1课时)教学设计
- 2024-2030年果蔬行业市场发展现状及竞争格局与投资战略研究报告
- 绵阳市高中2022级(2025届)高三第一次诊断性考试(一诊)语文试卷(含答案)
- 自然资源调查监测劳动和技能竞赛
- 2 0 2 4 年 7 月 国开专科《法理学》期末纸质考试 试题及答案
- 6.1 我对谁负责 谁对我负责 课件-2024-2025学年统编版道德与法治八年级上册
- 2023-2024学年天津市经开区国际学校八年级(上)期末物理试卷
- DB23T 3842-2024 一般化工企业安全生产标准化评定规范
- 期中模拟押题卷(1-3单元)(试题)-2024-2025学年苏教版数学六年级上册
- 环氧树脂项目可行性研究报告项目报告
评论
0/150
提交评论