已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3.3.2 函数的极值与导数A级基础巩固一、选择题1已知可导函数f(x),xR,且仅在x1处,f(x)存在极小值,则()A当x(,1)时,f(x)0;当x(1,)时,f(x)0B当x(,1)时,f(x)0;当x(1,)时,f(x)0C当x(,1)时,f(x)0;当x(1,)时,f(x)0D当x(,1)时,f(x)0;当x(1,)时,f(x)0解析:因为f(x)仅在x1处存在极小值,所以x1时,f(x)0,x1时,f(x)0.答案:C2(2017浙江卷)函数yf(x)的导函数yf(x)的图象如图所示,则函数yf(x)的图象可能是()解析:根据题意,已知导函数的图象有三个零点,且每个零点的两边导函数值的符号相反,因此函数f(x)在这些零点处取得极值,排除A、B;记导函数f(x)的零点从左到右分别为x1,x2,x3,又在(,x1)上f(x)0,所以函数f(x)在(,x1)上单调递减,排除C,故选D.答案:D3函数f(x)x2ln x的极值点为()A0,1,1B.C D.,解析:由已知,得f(x)的定义域为(0,),f(x)3x,令f(x)0,得x.当x时,f(x)0;当0x时,f(x)0),f(x),当x2时,f(x)0,此时f(x)为增函数;当0x2时,f(x)0,此时f(x)为减函数,因此x2为f(x)的极小值点答案:D5若函数f(x)x2x1在区间内有极值点,则实数a的取值范围是()A. B.C. D.解析:因为函数f(x)x2x1,所以f(x)x2ax1.若函数f(x)x2x1在区间内有极值点,则f(x)x2ax1在区间内有零点由x2ax10,得ax.因为x,yx在上递减,在(1,3)上递增,所以2a0,当x(1,1)时,f(x)0,所以f(x)极小值f(1)2,f(x)极大值f(1)2.函数yx33x的大致图象如图所示,所以2a0,此时函数f(x)单调递增;当x(0,2)时,f(x)0,此时函数f(x)单调递增所以当x0时,f(x)有极大值f(0)0;当x2时,f(x)有极小值f(2)4.故正确答案:三、解答题9设x1与x2是函数f(x)aln xbx2x的两个极值点(1)试确定常数a和b的值;(2)判断x1,x2是函数f(x)的极大值点还是极小值点,并说明理由解:(1)因为f(x)aln xbx2x,所以f(x)2bx1.由极值点的必要条件可知:f(1)f(2)0,所以a2b10且4b10,解得,a,b.(2)由(1)可知f(x)ln xx2x,且其定义域是(0,),f(x)x1x1.当x(0,1)时,f(x)0;当x(2,)时,f(x)0;所以,x1是函数f(x)的极小值点,x2是函数f(x)的极大值点10已知函数f(x)aexln x1.(1)设x2是f(x)的极值点,求a,并求f(x)的单调区间;(2)证明:当a时,f(x)0.(1)解:f(x)的定义域为(0,),f(x)aex.由题设知,f(2)0,所以a.从而f(x)exln x1,f(x)ex.当0x2时,f(x)2时,f(x)0.所以f(x)在(0,2)上单调递减,在(2,)上单调递增(2)证明:当a时,f(x)ln x1.设g(x)ln x1,则g(x).当0x1时,g(x)1时,g(x)0.所以x1是g(x)的最小值点故当x0时,g(x)g(1)0.因此,当a时,f(x)0.B级能力提升1等差数列an中的a1,a4 031是函数f(x)x34x26x1的极值点,则log2a2 016的值为()A2B3C4D5解析:因为f(x)x28x6,且a1,a4 031是函数f(x)x34x26x1的极值点,所以a1,a4 031是方程x28x60的两个实数根,则a1a4 0318.而an为等差数列,所以a1a4 0312a2 016,即a2 0164,从而log2a2 016log242.故选A.答案:A2设x1,x2是函数f(x)x32ax2a2x的两个极值点,若x12x2,则实数a的取值范围是_解析:由题意得f(x)3x24axa2的两个零点x1,x2满足x12x2,所以f(2)128aa20,解得2a6.答案:(2,6)3设a为实数,函数f(x)x3x2xa.(1)求f(x)的极值;(2)当a在什么范围内取值时,曲线yf(x)与x轴仅有一个交点?解:(1)f(x)3x22x1.令f(x)0,则x或x1.当x变化时,f(x),f(x)的变化情况如下表:x1(1,)f(x)00f(x)极大值极小值所以f(x)的极大值是fa,极小值是f(1)a1.(2)函数f(x)x3x2xa(x1)2(x1)a1,由此可知,x取足够大的正数时,有f(x)0,x取足够小的负数时,有f(x)0,所以曲线yf(x)与x轴至少有一个定点由(1)知
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 辰阳明德小学S版四年级语文下册教案(表格式)
- 博大精深的中华文化教学参考教案新人教必修
- 《萝卜回来了》教学设计
- 《物流运输实务》电子教案
- 旅游景区导游聘用合同范本
- 养猪场租赁合同:养殖产业转型
- 医疗美容医师聘用合同
- 健身房宿舍管理员招聘启事
- 咖啡馆冬季空调租赁合同范文
- 影剧院指示牌安装协议
- 新生儿肠胀气课件
- 顾客满意理念与技巧课件
- 付款条件与支付方式
- 数字化赋能绿色智能制造案例分析
- 新生儿常见问题及护理 课件
- 搜狗拼音输入法打字入门
- 【课件】+现实与理想-西方古典绘画+课件高中美术人美版(2019)美术鉴赏
- 纯银的金相组织分析报告
- 2024年清洗剂行业未来五年发展预测分析报告
- 客户经理关键素质课件
- 爬宠行业的分析
评论
0/150
提交评论