已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课时跟踪检测(十七) 任意角、弧度制及任意角的三角函数一抓基础,多练小题做到眼疾手快1(2019如东模拟)与600终边相同的最小正角的弧度数是_解析:600720120,与600终边相同的最小正角是120,120.答案:2若一圆弧长等于其所在圆的内接正三角形的边长,则其圆心角(0)的弧度数为_解析:设圆半径为r,则其内接正三角形的边长为r,所以rr,所以.答案:3(2019苏州期中)已知扇形的圆心角为,其弧长是其半径的2倍,则_.解析:圆心角2,2,sin 0,cos 0,tan 0,1111.答案:14已知角的顶点为坐标原点,始边为x轴的非负半轴,若P(4,y)是角终边上一点,且sin ,则y_.解析:因为sin ,所以y0,且y264,所以y8.答案:85已知角的终边上一点P(,m)(m0),且sin ,则m_.解析:由题设知点P的横坐标x,纵坐标ym,所以r2|OP|2()2m2(O为原点),即r.所以sin ,所以r2,即3m28,解得m.答案:6已知集合M,N,则M,N之间的关系为 _.解析:k(2k1)是的奇数倍,所以NM.答案:NM二保高考,全练题型做到高考达标1(2019常州调研)若扇形OAB的面积是1 cm2,它的周长是4 cm,则该扇形圆心角的弧度数为_解析:设该扇形圆心角的弧度数是,半径为r,根据题意,有解得2,r1.故该扇形圆心角的弧度数为2.答案:22(2018黄桥中学检测)设是第二象限角,P(x,4)为其终边上的一点,且cos x,则tan 2_.解析:由三角函数的定义可得cos .因为cos x,所以x,又是第二象限角,所以x0,解得x3,所以cos ,sin ,所以tan ,所以tan 2.答案:3已知角终边上一点P的坐标是(2sin 2,2cos 2),则sin _.解析:因为r2,由任意三角函数的定义,得sin cos 2.答案:cos 24已知角2的终边落在x轴上方,那么是第_象限角解析:由题知2k22k,kZ,所以kk,kZ.当k为偶数时,是第一象限角;当k为奇数时,为第三象限角,所以为第一或第三象限角答案:一或三5与2 017的终边相同,且在0360内的角是_解析:因为2 0172175360,所以在0360内终边与2 017的终边相同的角是217.答案:2176(2019淮安调研)已知为第一象限角,sin ,则cos _.解析:为第一象限角,sin ,cos .答案:7一扇形是从一个圆中剪下的一部分,半径等于圆半径的,面积等于圆面积的,则扇形的弧长与圆周长之比为_解析:设圆的半径为r,则扇形的半径为,记扇形的圆心角为,则,所以.所以扇形的弧长与圆周长之比为.答案:8在(0,2)内,使sin xcos x成立的x的取值范围为_解析:如图所示,找出在(0,2)内,使sin xcos x的x值,sincos,sincos.根据三角函数线的变化规律标出满足题中条件的角x.答案:9(2019镇江中学高三学情调研)点P从(1,0)出发,沿单位圆x2y21按顺时针方向运动弧长到达点Q,则点Q的坐标为_解析:由题意可得点Q的横坐标为cos,Q的纵坐标为sinsin ,故点Q的坐标为.答案:10已知角的终边在直线y3x上,求10sin 的值解:设终边上任一点为P(k,3k),则r|k|.当k0时,rk,所以sin ,所以10sin 330;当k0时,rk,所以sin ,所以10sin 330.综上,10sin 0.11已知扇形AOB的周长为8.(1)若这个扇形的面积为3,求圆心角的大小;(2)求这个扇形的面积取得最大值时圆心角的大小和弦长AB.解:设扇形AOB的半径为r,弧长为l,圆心角为,(1)由题意可得解得或所以或6.(2)法一:因为2rl8,所以S扇lrl2r224,当且仅当2rl,即2时,扇形面积取得最大值4.所以圆心角2,弦长AB2sin 124sin 1.法二:因为2rl8,所以S扇lrr(82r)r(4r)(r2)244,当且仅当r2,即2时,扇形面积取得最大值4.所以弦长AB2sin 124sin 1.三上台阶,自主选做志在冲刺名校1如图,在平面直角坐标系xOy中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P的位置在(0,0),圆在x轴上沿正向滚动,当圆滚动到圆心位于(2,1)时,的坐标为_解析:如图,作CQx轴,PQCQ,Q为垂足根据题意得劣弧D2,故DCP2弧度,则在PCQ中,PCQ弧度,CQcossin 2,PQsincos 2,所以P点的横坐标为2CQ2sin 2,P点的纵坐标为1PQ1cos 2,所以P点的坐标为(2sin 2,1cos 2),此即为向量的坐标答案:(2sin 2,1cos 2)2已知sin 0,tan 0.(1)求角的集合;(2)求终边所在的象限;(3)试判断 tansin cos的符号解:(1)由sin 0,知在第三、四象限或y轴的负半轴上;由tan 0, 知在第一、三象限,故角在第三象限,其集合为.(2)由2k2k,kZ,得kk,kZ,故终边在第
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 沈阳理工大学《构成艺术》2021-2022学年第一学期期末试卷
- 沈阳理工大学《单片机原理与接口技术》2021-2022学年期末试卷
- 广东省预拌混凝土买卖合同
- 孩子上学购房合同摘抄表
- 合同变更及终止管理办法
- 2024-2025学年高中政治第四单元认识社会与价值选择11.2社会历史的主体作业含解析新人教版必修4
- 2024《秦皇岛市劳动合同》
- 2024年泰安客运资格证模拟考试题
- 2024工程桩基检测合同书
- 第23课《黄继光》第一课时(分层作业)-【上好课】四年级语文下册部编版
- 天津市2024-2025学年高一上学期11月期中考试 化学试题(无答案)
- 养老院膳食营养保障方案
- 陕西省汉中市勉县第二中学2024-2025学年高二上学期11月期中考试政治试题
- 2024年中国酱香型习酒市场调查研究报告
- 质量管理工程师(QA工程师)岗位招聘笔试题与参考答案
- 河北省邢台市2023-2024学年八年级上学期期中数学试题(解析版)
- 安全生产治本攻坚三年行动方案(2024-2026)
- Unit 3 Toys Lesson 1(教学设计)-2024-2025学年人教精通版(2024)英语三年级上册
- 2024年秋初中物理八年级上册教学设计(教案)第5节 跨学科实践:制作望远镜
- 分级阅读The Fantastic Washing Machine 洗衣机超人 教学设计-2023-2024学年牛津译林版英语七年级下册
- 2025高考物理步步高同步练习必修3学习笔记第十三章 电磁感应与电磁波初步磁场 磁感线
评论
0/150
提交评论