已阅读5页,还剩29页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2 第二型曲面积分,教学目的: 掌握第二型曲面积分的定义和计算公式 教学内容: 曲面的侧;第二型曲面积分的定义和计算公式 (1) 基本要求:掌握用显式方程的第二型曲面积分的定义和计算公式 (2) 较高要求:掌握用隐式方程或参量表示的曲面的第二型曲面积分计算公式,掌握两类曲面积分的联系,曲面的侧 第二型曲面积分概念 第二型曲面积分的计算 两类曲面积分的联系, 曲面分类,双侧曲面,单侧曲面,莫比乌斯带,曲面分上侧和下侧,曲面分内侧和外侧,曲面分左侧和右侧,(单侧曲面的典型),一、曲面的侧,设连通曲面 S 上处处有连续,设 M0 为曲面 S 上一点,确定,方向为正方向,另一个方向为负方向.,L 为 S 上任一经过点 M0 且不超出 S 边界的闭曲线.,设点 M 从 M0 出发,沿 L 连续移动, M 在 M0 点与M0,变动的切平面(或法线),曲面在M0 点的一个法线,有相同的法线方向,,当点 M 连续移动时,其法线方向,也连续变动,最后当 M 沿 L 回到M0 时,若这时 M 的,法线方向仍与 M0 点的法线方向一致,则称此曲面 S 为,双侧曲面;若与 M0 的法线方向相反,则称 S 为单侧曲,面,1. 问题的提出,从给定曲面 S 的负侧流向正侧,,设某流体以一定的速度,求单位时间内流经曲面 S 的流量 E,如果流体的流速是不变的常向量 v ,,S 是平面,其正侧的单位法向量为,no ,时间内流经曲面 S 的流量 E 为:,E = v no S,S 的面积记为 S ,则单位,二、第二型曲面积分的概念,将曲面 S 任意分成 n 块,设该点的单位法向量为:,流经该点的流速为,在小曲面块 Si 的正侧上,任取一点,Si i = 1, 2, . . . , n,则单位时间内流经小曲面 Si的流量近似地等于,其中 Si 为小曲面Si 的面积.,记,它们是 Si 的正侧分别在坐标面,面积的近似值,于是单位时间,yz , zx 和 xy 上投影区域,内流经小曲面 Si 的流量,也近似地等于,故单位时间内由曲面 S 的负侧流向正侧的 总流量,第二型曲面积分的定义,设 P , Q , R 为定义在双侧曲面 S 上的函数,在 S 所,指定的一侧作分割 T ,把 S 分为 n 个小曲面 S1 , S2,. . . , Sn , 记,分别表示 Si 在三个坐标轴上的投影区域的面积, 在 Si,上任取一点,若,存在,则称此极限为函数 P , Q , R 在曲面 S 所指定,一侧上的第二型曲面积分,也称为对坐标的曲面积分,或,记作,常简记为,若令,则第二型曲面积分也记作向量形式:,由第二型曲面积分的定义,流体以速度,从曲面 S 的负侧流向正侧的总流量,称为P 在有向曲面S上对坐标 y, z 的曲面积分;,称为Q 在有向曲面S上对坐标 z, x 的曲面积分;,称为R 在有向曲面S上对坐标 x, y 的曲面积分;,若以 -S 表示曲面 S 的另一侧,则由定义可得,3. 第二型曲面积分的性质, 若曲面 S 由两两无公共内点的曲面,Si i = 1, 2, . . . , n 所组成,则,定理22.2,取上侧,是 S 上的连续函数, 则,设光滑曲面,三、第二型曲面积分的计算,注:,积分,的计算,必须先将曲面,表示成:,再代公式计算,证:,S 取上侧,说明:,如果积分曲面 S 取下侧, 则,若曲面 S 是母线平行于 z 轴的柱面(垂直于 xy 坐,标面),则,(前正后负),将曲面 S 表示为,若曲面 S 是母线平行于 x 轴的柱面(垂直于 yz 坐,标面),则,积分,的计算方法:,(右正左负),若曲面 S 是母线平行于 y 轴的柱面(垂直于 zx 坐,标面),则,积分,的计算方法:,将曲面 S 表示为,解,例1. 计算曲面积分,其中 S 为球面,外侧在第一和第五卦限部分.,把 S 分为上下两部分,思考:,例. 计算,其中 S 是以原点为中心, 边长为 2 的正立方,体的整个表面的外侧.,解,其中 S1 是 S 的顶部,取上侧,S2 是S 的底部,取下侧,由对称性,有,例. 计算,其中 S 是由平面 x = y = z = 0 和 x + y + z = 1 所围的四面,体表面的外侧.,解:,设 S1 是,取上侧,S2 是S 的底部,取下侧,在 xy 坐标面上的投影区域为 Dxy,先计算积分,由对称性,例. 计算,其中 S 是球面,取外侧为正向.,解:,设 S1 是上半球面,取上侧,S2 是下半球面,取下侧,在 xy 坐标面上的投影区域,先计算积分,同理可得,所以,设光滑曲面 S ,其指定一侧的法方向余弦为:,则沿曲面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公益活动形象宣传大使合同
- 保险公司法务专员招聘协议
- 社会组织暂行管理办法
- 拆迁补偿安置
- 培训社区防疫知识与技能
- 博物馆消防工程升级合同
- 在线旅游平台风险管理
- 环卫垃圾处理机械租赁协议
- 玩具公司续租合同样本
- 影楼员工招聘协议
- 2023年度学校食堂食品从业人员考核试题(附答案)
- 主题人像摄影智慧树知到答案2024年四川工商职业技术学院
- 餐饮服务食品安全规范2024
- 酒业有限公司财务管理制度方案
- 高空蜘蛛人施工专项施工方案
- 全国新世纪版信息技术七年级上册第一单元第四课《电脑是如何工作的》教学设计
- 立冬主题课件
- 工程伦理与工程认识智慧树知到期末考试答案章节答案2024年哈尔滨工程大学
- 上海市2023-2024学年高一化学上学期期中试题
- (高清版)JTGT 3331-2024 采空区公路设计与施工技术规范
- 诺贝尔生理学或医学奖史话 知到智慧树网课答案
评论
0/150
提交评论