已阅读5页,还剩26页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第3讲 简单的逻辑联结词、全称量词与存在量词,【2013年高考会这样考】 1考查逻辑联结词“或”、“且”、“非”的含义,能用“或”、“且”、“非”表述相关的数学内容 2考查对全称量词与存在量词意义的理解,叙述简单的数学内容,并能正确地对含有一个量词的命题进行否定,【复习指导】 复习时应紧扣概念,辨析疑难点,理清相似概念间的异同点,准确把握逻辑联结词的用法,熟练掌握对含有量词命题的否定的方法本节常与其他知识结合,在知识的交汇处命题,试题难度中档偏下.,基础梳理,1简单的逻辑联结词 (1)命题中的“ ”、“ ”、“ ”叫做逻辑联结词 (2)命题pq,pq,綈p的真假判断,或,且,非,2.全称量词与存在量词、全称命题与特称命题 (1)短语“所有的”“任意一个”这样的词语,一般在指定的范围内都表示事物的全体,这样的词叫做全称量词,用符号“”表示,含有全称量词的命题,叫做 全称命题“对M中任意一个x,有p(x)成立”可用符号简记为: (2)短语“存在一个”“至少有一个”这样的词语,都是表示事物的个体或部分的词叫做存在量词并用符号“”表示含有存在量词的命题叫做 特称命题“存在M中的一个x0,使p(x0)成立”可以用符号简记为: ,全称命题,xM,p(x),特称命题,x0M,p(x0),3含有一个量词的命题的否定,一个关系 逻辑联结词与集合的关系 “或、且、非”三个逻辑联结词,对应着集合运算中的“并、交、补”,因此,常常借助集合的“并、交、补”的意义来解答由“或、且、非”三个联结词构成的命题问题,三个注意 (1)pq为真命题,只需p,q有一个为真即可,pq为真命题,必须p,q同时为真,解题时要注意分类讨论思想的应用 (2)p或q的否定为:非p且非q;p且q的否定为非p或非q. (3)高考中较多地考查简单逻辑与其他知识的综合问题,要注意其他知识的提取与应用,一般先化简转化命题,再处理关系,双基自测,2(2011北京)若p是真命题,q是假命题,则 ( ) Apq是真命题 Bpq是假命题 C非p是真命题 D非q是真命题 解析 q是假命题,故綈q是真命题,故选D. 答案 D,3(2011辽宁)已知命题p:n0N,2n1 000,则非p为 ( ) AnN,2n1 000 BnN,2n1 000 Cn0N,2n1 000 Dn0N,2n1 000 解析 由特称命题的否定为全称命题知,非p为nN,2n1 000,故选A. 答案 A,4(2011广州模拟)若p:xR,sin x1,则 ( ) Ap:x0R,sin x01 Bp:xR,sin x1 Cp:x0R,sin x01 Dp:xR,sin x1 解析 由于命题p是全称命题,对于含有一个量词的全称命题p:xM,p(x),它的否定为p:x0M,p(x0),故应选A. 答案 A,5命题p:有的三角形是等边三角形,命题p:_. 答案 所有的三角形都不是等边三角形,考向一 含有逻辑联结词的命题的真假判断,【例1】已知命题p1:函数y2x2x在R上为增函数p2:函数y2x2x在R上为减函数则在命题q1:p1p2,q2:p1p2,q3:(綈p1)p2和q4:p1(綈p2)中,真命题是 ( ) Aq1,q3 Bq2,q3 Cq1,q4 Dq2,q4 审题视点 根据复合函数的单调性判断p1,p2的真假,判断含有逻辑联结词的命题真假,主要是把其中单个命题的真假判断清楚,在此基础上再根据含有逻辑联结词的命题真假判断的准则进行,【训练1】 已知命题p:0,q:11,2,由它们构成的“pq”,“pq”,“p”形式的命题中,真命题有 ( ) A0个 B1个 C2个 D3个 解析 命题p为真命题,命题q为假命题,则pq为真命题,pq为假命题,p为假命题 答案 B,考向二 含有量词的命题的真假判断,【例2】(2011合肥模拟)下列命题中的假命题是 ( ) Ax0R,lg x00 Bx0R,tan x01 CxR,x30 DxR,2x0 审题视点 根据量词的意义和给出的关系进行判断即可,对于特称命题的判断,只要能找到符合要求的元素使命题成立,即可判断该命题成立,对于全称命题的判断,必须对任意元素证明这个命题为真,也就是证明一个一般性的命题成立时,方可证明该命题成立,而只要找到一个特殊元素使命题为假,即可判断该命题不成立,考向三 含有量词的命题的否定,全称命题的否定是特称命题,特称命题的否定是全称命题.,【训练3】 命题“存在x0R,使得x2x050”的否定是_ 答案 对任意xR,都有x22x50,规范解答1借助常用逻辑用语求解参数范围问题,【问题研究】 利用常用逻辑用语求解参数的取值范围主要涉及两类问题:一是利用一些含有逻辑联结词命题的真假来确定参数的取值范围;二是利用充要条件来确定参数的取值范围求解时,一定要注意取值区间端点值的检验,处理不当容易出现漏解或增解的现象 【解决方案】 解决此类题目首先是合理转化条件、运用有关性质、定理等得到参数的方程或不等式,然后通过解方程或不等式求得所求问题,(1)p,q真时,分别求出相应的c的范围;(2)用补集的思想求出綈p,綈q分别对应的c的范围;(3)根据“pq”为假、“pq”为真,确定p,q的真假,解决此类问题的关键是首先准确地把每个条件所对
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 遗传算法流程图
- 教育部学科分类与代码(全部)
- 2024购销合同下载范文
- 2024临时工解聘协议书临时工聘用合同协议书
- 自然资源安全生产
- 规划课题申报范例:“双高校”绩效评价研究(附可修改技术路线图)
- 深圳大学《知识产权法学》2021-2022学年期末试卷
- 副主任医师定期考核述职报告范文(7篇)
- 关于班组长安全承诺书3篇
- 军训决心书(集锦15篇)
- 食用菌现代高效农业示范园区建设项目建议书
- 东营港加油、LNG加气站工程环评报告表
- 2024年日历(打印版每月一张)
- 车用动力电池回收利用 管理规范 第2部分:回收服务网点征求意见稿编制说明
- 新剑桥少儿英语第六册全册配套文本
- 科学预测方案
- 职业生涯规划网络与新媒体专业
- T-WAPIA 052.2-2023 无线局域网设备技术规范 第2部分:终端
- 市政管道开槽施工-市政排水管道的施工
- 初中八年级英语课件Reading Giant pandas-“江南联赛”一等奖2
- 人工智能在教育行业中的应用与管理
评论
0/150
提交评论