多元函数微分学的几何应用.ppt_第1页
多元函数微分学的几何应用.ppt_第2页
多元函数微分学的几何应用.ppt_第3页
多元函数微分学的几何应用.ppt_第4页
多元函数微分学的几何应用.ppt_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

,空间曲线的方程:,设上式中的三个函数均可导.,一、空间曲线的切线与法平面,问题:研究 M 点的切线?,割线MM 极限位置切线,上式分母同除以,割线 的方程为,MM 的方向向量是什么?,(1),曲线在M处的切线方程:,切向量:切线的方向向量称为曲线的切向量.,法平面:过M点且与切线垂直的平面.,(1)式分母是什么?,解,切线方程,法平面方程,1.空间曲线方程为,法平面方程为,特殊情况分析:,切线方程为,切向量是什么?,切向量为,所求切线方程为,法平面方程为,小结,求空间曲线的切线与法平面关键是求切向量,设曲面方程为,曲线在M处的切向量,假设:在曲面上任取一条通过点 M 的曲线,二、曲面的切平面与法线,令,则,切平面方程为,讨论:为什么?,法线方程为,曲面在M处的法向量即,垂直于曲面上切平面的向量称为曲面的法向量.,特殊情况:空间曲面方程形为,曲面在M处的切平面方程为,曲面在M处的法线方程为,令,讨论:法向量是什么?,其中,单位法向量,如果法向量向下呢?,解,切平面方程为,法线方程为,解,令,切平面方程,法线方程,解,设 为曲面上的切点,切平面方程为,依题意,切平面方程平行于已知平面,得,法向量是什么?,因为 是曲面上的切点,,所求切点为,满足方程,切平面方程(1),切平面方程(2),讨论:为什么?,小结,求曲面的切平面与法线关键是求曲面的法向量,切平面上点的竖坐标的增量,因为曲面在M处的切平面方程为,三、全微分的几何意义,空间曲线的切线与法平面,曲面的切平面与法线,求空间曲线的切线与法平面关键是求切向量 当空间曲线方程为一般式时,求切向量常常采用推导法,求法向量的方向余弦时注意符号,三、小结,求曲面的切平面与法线关键是求曲面的法向量,全微分的几何意义,思考题,思考题解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论