§1.10闭区间上连续函数的性质.ppt_第1页
§1.10闭区间上连续函数的性质.ppt_第2页
§1.10闭区间上连续函数的性质.ppt_第3页
§1.10闭区间上连续函数的性质.ppt_第4页
§1.10闭区间上连续函数的性质.ppt_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1,1.10 闭区间上连续函数 的性质,介值定理( intermediate value theorem ),小结 思考题 作业,最大值(maximum )和 最小值(minimum)定理,第一章 函数与极限,2,定义,例,设f (x)在区间I上有定义,使得当,恒有,若存在点,为函数f(x)在区间I上的,最小 值,记为,则称,(大),一、最大值和最小值定理,3,在闭区间上连续的,(1) 定理1中的条件“闭区间”和“连续性”,定理1(最大值和最小值定理),函数一定有最大值和最小值.,是不可少的.,4,在开区间(0,1)内连续,在(0,1)内,又如:,在闭区间0,2上有,函数f (x)在0,2上,既没有最大值,如:,函数,没有最大值或最小值.,也没有最小值.,间断点,函数,5,(2) “闭区间”和“连续性”,在开区间,取得最小值,函数,处取得最大值 1.,而不是必要条件.,如,函数,内连续,但它在,处取得最大值1;,又如,在闭区间,上有间断点,取得最小值,但它在,仅是定理的充分条件,6,证,由定理1(最值定理),定理2(有界性定理),有,取,则有,7,的零点.,定理3(方程实根的存在定理),使得,零点定理,几何意义:,如图所示.,二、介值定理,8,定理4(介值定理),使得,证,零点定理,辅助函数,9,几何意义:,至少有一个交点.,10,几何意义:,之间的任何值(不会有任何遗漏).,推论,在闭区间上连续的函数必取得介于最大值,与最小值,11,闭区间上连续函数的性质常用于:,证明某些等式或不等式;,判断某些方程根的存在性或实根的范围.,12,例,证,由零点定理,13,例,证,由零点定理,使,辅助函数,14,证,例,证明:,令,介值定理,使,即得,15,注,方程f(x)=0的根,函数f(x)的零点,有关闭区间上连续函数命题的证明方法,10直接法:先利用最值定理,再利用介值定理,20间接法(辅助函数法):先作辅助函数, 再利用零点定理,16,辅助函数的作法,(1)将结论中的(或x0或c)改写成x,(2)移项使右边为0,令左边的式子为F(x) 则F(x)即为所求,区间一般在题设中或要证明的结论中已经给出,余下只须验证F(x)在所讨论的区间上连续,再比较一下两个端点处的函数值的符号,或指出要证的值介于F(x)在所论闭区间上的最大值与最小值之间。,17,三、小结,四个定理,有界性定理;最值定理;介值定理;根的存在性定理.,注意 1闭区间; 2连续函数 这两点不满足上述定理不一定成立,解题思路,1.直接法:先利用最值定理,再利用介值定理;,2.辅助函数法:先作辅助函数F(x),再利用零点定理;,18,1.,练习题,设 f (x)C ( a, b ),证明: 至少存在一点 x1 , xn , 使得,2.,a x1 x2 xn b,19,1.,证:,由零点定理知,总之,20,设 f (x)C ( a, b ),证明: 至少存在一点 x1 , xn , 使得,2.,a x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论