高等数学加强版湘潭大学文科高等数学教学改革课题组课后答案.pdf_第1页
高等数学加强版湘潭大学文科高等数学教学改革课题组课后答案.pdf_第2页
高等数学加强版湘潭大学文科高等数学教学改革课题组课后答案.pdf_第3页
高等数学加强版湘潭大学文科高等数学教学改革课题组课后答案.pdf_第4页
高等数学加强版湘潭大学文科高等数学教学改革课题组课后答案.pdf_第5页
已阅读5页,还剩28页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

() 5.1 A 1 (1) axn n limkax kn n lim. (2) ) , 2 , 1( 0 nxn0limaxn n axn n lim. (1) axn n lim0NNNn axn. NnNkn ax kn ax kn n lim. (2) axn n lim0NNNnaxn. 0a aa ax a ax ax ax ax n n n n n 0a nn xx0 axn n lim. 2. (1) ; 2 1 34 12 lim n n n (2) 0)1(limnn n ; (3) 2 1 42 4 lim 2 2 nn nn n (4) 1lim 22 n an n . (1) 211551 4322(43)8 n nnnn a kn kn N NN NNnN x ax x a a n n n 0 1 ,NNn 2111 . 432 n nn 211 lim. 432 n n n (2) 11 1, 1 nn nnn 0 2 1 ,NNn 1 1.nn n lim(1)0. n nn (3) 4 1 Nn04n0 2 222 413434 2422 242 24 nnnn nnnnnn 2 331 , 2 24 n nnn 1 n 1 2 N 1 , 4max ,max 21 NNN 0 1 max4, NNn 2 1 42 4 2 2 nn nn 2 2 41 lim. 242 n nn nn (4) 0a0a 22 limlim11. nn na n lim(1)0.lim(1)0.lim(1)0.lim(1)0.lim(1)0.lim(1)0.lim(1)0.lim(1)0.lim(1)0.lim(1)0. 0404 4 4 413434413434413434413434413434 lim(1)0. 0 0 222222 413434413434 222222222 413434413434413434 nnnnnnnnnnnn 413434 2422 242 242422 242 24 222222222 2422 242 242422 242 24 maxmaxN Nmaxmax max4, 0 n a nann a n an 2 22 222 )( 1 1 22 n an n a 2 . 2 a n. 2 a NNn n a2 1 22 n an 1lim 22 n an n . 3.axn n limaxn n lim axn n lim0NNNn axn. Nn axn n xa lim. n n xa 1, n n xlim1. n n xlim n n x. 4 n x0lim n n y0lim nn n yx. n x0,M (1,2,). n xM n lim0, n n y0NNNn n n N N N NN NNnNn x xn n x , n y M . nnnn x yxyM M 0lim nn n yx. 5. (1) ; 0 sin lim x x x (2) ; 2 1 12 1 lim x x x (3) ; 1) 12(lim 1 x x (4) 4 lim2; x x (5) 2 2 1 12 lim; 213 x x xx (6) ( , )(1,2) lim(3)5. x y xy (1) 0 2 1 MxM sinsin1 0, xx xxx ; 0 sin lim x x x (2) 11322 , 2122 212121 x xxxx 0 1 2 1 , 2 MxM 112 , 21221 x xx 11 lim. 212 x x x (3) (21) 121,xx sinsin 0,0,0, x x xxxxxxxxxxxx 0,0,0,0,0, lim(3)5.lim(3)5.lim(3)5.lim(3)5.lim(3)5.lim(3)5.lim(3)5. 1 0,0, 1 xxxxxxxxx 0,0,0,0,0,0,0,0, sinsin limlim x x x 1132211322 2122 2121212122 212121 x x xxxxxxxx2122 2121212122 2121212122 2121212122 212121 0, 2 10x (21) 1212,xx 1 lim(21)1. x x (4) 44 2, 22 xx x x 01,204x 4 2. 2 x x 4 lim2. x x (5)01,x10.x 2 2 12121 2132133(21) xxx xxxx 1x1 0 xx110x20x1x. 211,x 11 3(21)3 xx x 3 2 12 1 2 2 xx x , 3 1x 31x. 1212112121 2132133(21)2132133(21) xxxxxx 2132133(21)2132133(21) 1212112121121211212112121 2132133(21)2132133(21)2132133(21)2132133(21)2132133(21)2132133(21) 121211212112121 2132133(21)2132133(21) xxxxxx 2132133(21) 121211212112121121211212112121 2132133(21)2132133(21)2132133(21)2132133(21) 3 , 1min10x 3 2 12 1 2 2 xx x . (6) (3)53(1)2312 ,xyxyxy 22 |1|(1)(2) ,xxy 22 |2|(1)(2) ,yxy 22 0(1)(2)xy (3)531234 .xyxy 1 4 22 0(1)(2)xy (3)5,xy ( , )(1,2) lim(3)5 x y xy 6. 2 yx 0 x x 0 xx 2 yx 22 2 000 2,yxxxxxx 2 0 00 limlim 20, xx yxxx 2 yx 0 x 7.sinyx, 0 x,x 0 xxxsinyx 000 sinsin2sincos, 22 xx yxxxx 0 |cos()| 1, 2 x x | |sin|, 22 xx lim(3)5 x 2 2 yxyxyxyxyx 2222222222 000000000000000 2222 2 2 222222 2, 22 yxxxxxxyxxxxxxyxxxxxx 000000000 limlim 2limlim 2yxxxyxxx 0000xxxxxx00000000 limlim 2limlim 2limlim 2limlim 2limlim 2limlim 2 0 0 x x 0 2 sincos21, 222 xxx yxx 0, 0 xx 0 sinsin,xxyx sinyx 0 x 0 x, sinyx, B 1limlimlim 212 axxax n n n n n n . ” lim n n xa0NNNn axn NnNn12Nn2 ax n 12 ax n2 limlim 212 axx n n n n . ”limlim 212 axx n n n n ,0 12 ,N NN 1 Nn ax n 12 2 Nn ax n2 ) 2 , 12 ( max 21 NNNNnaxn limaxn n . N N x x n2 2n x x n2 lim n n limlim 2 x x limlimlim 212 axxax n n n n n n . 2 PQ ,P Q ,P Q.xfy 0 xx 0 xxf 0 xfyxfz, 00, y xxy 00, y xyxf, 00, y xf. 3 n n xlim0sinlim 2 n x n n n . n n xlim)., 2 , 1(, 0nMxM n .sin 2 n M n x n x n n n ,0sin, 0 2 n M n x aNn M N n 0sinlim 2 n x n n n . 4 n xa. axn n lim0NNNnaxn. lim n n xa 0 0NN 0 nN 0 0n xa. 5.2 A 1. (1)lim 3n n n ; (2) 1 lim 1 n n ; (3) ) 1 2 1 1 1 (lim nnnn n (4) n nn 1 3 1 2 1 1lim (5) 1 2 11 (lim 222 nnnn n n (6) 2( 1) lim. 2 n n n n (1) sinsin 2 n n a . . NNNN sinsin 2 2 n n x x n n n n n MM NnNn n n NNNNNNnN 2 0 33 n nn n , 2 lim00, lim0, 3 n n nn , lim0. 3n n n (2) 11 1lim 11 n nn lim11, n 1 lim(1)1 n n , 1 lim 11. n n (3) 111 , 121 nn nnnnnnn lim1, n n nn , 1 1 lim n n n 111 lim()1. 12 n nnnn (4) n n n n 1 3 1 2 1 1 1 11lim n 1lim n n n 1 1 lim 11.lim 11.lim 11. 1 1 n n lim 11.lim 11.lim 11.lim 11. 111111111111 1212 nnnn111111 nnnnnnnnnnnnnn1212nnnnnnn1212121212 lim1,lim1,lim1, n n n n lim1, nnnn 1 1 3 1 2 1 1limn nn . (5) 22 22222 111 (, 2 nn n nnnnnnn 2 2 lim1; n n nn 2 2 lim1, n n n 222 111 lim ()1. 2 n n nnnn (6) 112( 1)3 , 2222 nnn n n 11 lim 22 n 31 lim 22 n n 2( 1)1 lim. 22 n n n n 2 (1) 1 lim sin x x x (2) 2 sec)1 (lim 1 x x x (3) 2 cot 2 0 lim 1 3tan x x x (4) 2 1 lim 3 x x x x (5) 2 2 lim 1 x x x x (6) 3 0 1tan1 sin lim x xx x ; (7) 31 limsinln 1sinln 1; x x xx (8) 1 1 lim 1 x x x (9) 21 lim 21 n x n n (10) 1 lim 1 x x x 1111 2222 limlim 3131 lim 2222 2( 1)12( 1)1 limlim n n n 2( 1)12( 1)12( 1)1 2 cot (11) 5 lim 1 x x x (12) 1 23 lim 21 x x x x . (1) 1 sin 1 lim sinlim1. 1 xx x x x x (2)1,xt . 2 2 sin 2 lim 2 2 sin lim 2 sec)1 (lim 001t t t tx x ttx (3) 2 2 3 1 cot 223 3tan 00 lim 1 3tanlim1 3tan. x x xx xxe (4) 4 3 21 4 4 141 limlim1. 333 x x xx xx e xxx (5) 2 2 11 limlimlimlim1. 11 111 11 xx x xx xxxx xxx xxx xx (6) 3 0 1tan1 sin lim x xx x 3 0 tansin lim 1tan1 sin x xx xxx 33 00 1tansin1sinsin .cos limlim 22cos xx xxxxx xxx 2 0 1sin1 cos11 lim. 2cos4 x xx xxx (7) 33 sin ln 1sinln 1 33 lim sinln 1limlimln 1 13 ln 1 xxx xx xx xx xx .3 3 33 limln 1limln 13. x x xx xx 1 lim sin ln 11, x x x limlim1.limlim1. xxxxxxxxxx xxx limlim1. xxx 111111111111111111111111111111111111111111111111 limlim1.limlim1. xxxx xxxxxx xxxx 111111 limlim1.limlim1.limlim1. 1111 limlim1.limlim1.limlim1.limlim1.limlim1. 1111111111111111 limlim1. 1111111111 limlim1.limlim1.limlim1. 11 1111 11 xxxxxx11 1111 1111 11111111111111 3 0 0 tansin limlim x x xxx 3 1tansin1sinsin .cos1tansin1sinsin .cos lim 1tansin1sinsin .cos 2 31 limsinln 1sinln 13 12. x x xx (8) 1 1 111 lim 1lim11 xx xx xxx 1 1 111 lim 1lim 11. x xx e xxe (9) 212 limlim 1 2121 nn xx n nn 11 22 1 2 1111 lim 111. 11 22 n x ee nn (10),txxt 1 lim 1 x x x 1 lim 1 t t t 11 lim. 1 1 t t e t ( 1) 11 lim 1lim 1 xx xx xx 1 1 1 lim 1. x x e x (11) 5 x u,xu, 55 5 5 5 5111 lim 1lim 1lim1lim 1 /5 x xuu xxxx e xxuu . (12) 232 1 2121 x xx , 21xu, 1 2 u x,x,u. 1 1 1 2222 2 2322 limlim 1lim 1 21 uu x xuu x ee xuu . 310 n x 4 1 )1 ( 1nn xx , 2 , 1n n x. 10 n x110 n x 1 1 (1), 4 nn xx ( 1)( 1)xxxxxxxxxx 1111111111 xxxxxx 11111111 lim 1lim 1lim 1lim 1 111111 lim 1lim 1lim 1lim 1lim 1lim 1lim 1lim 1 xxxxxxxx lim 1lim 1 xxxxxx 11 lim.lim. 11 t lim. e e lim. 1 1 t t t ( 1) lim 1lim 1lim 1lim 1 , 5 x x 5 51115111 5 lim 1lim 1lim1lim 1lim 1lim 1lim1lim 1 51115111 lim 1lim 1lim1lim 1lim 1lim 1lim1lim 1lim 1lim 1lim1lim 1lim 1lim 1lim1lim 1lim 1lim 1lim1lim 1lim 1lim 1lim1lim 1lim 1lim 1lim1lim 1 xxxx xxuuxxuu/5 xxxxxxxx /5 xxxxxxxx lim 1lim 1lim1lim 1 /5/5 xxxxxxxx /5 xxxxxxxx /5 lim 1lim 1lim1lim 1lim 1lim 1lim1lim 1 1 1 4(1) n n x x 0 )1 (4 )21 ( )1 (4 441 )1 (4 1 22 1 n n n nn n n nn x x x xx x x xx n x. 10 n x n x. n xAxn n lim 4 1 )1 ( 1nn xx 4 1 )1 (AA 0144 2 AA0) 12( 2 A 2 1 A 2 1 lim n n x. B 1) 1( 0lima a n n n . 0 n n a n x 0 n x n x. 1 11 limlim 1 ana n x x n n n n NNnN1 1 n n x x Nn n x. n xAxn n lim n nn n x na n a n na n a n x 111 1 1 n nn n n x na n xlim 1 limlim 1 A a A 1 n . limlim n x n n n 1 1 1 n n n x x x 1 (1)0,A a 0.A 0lim n n a n . 2 (1) 222 12 lim; 12 n n nnnnnnn (2) 222 lim. (1)(2)() n nnn nnnn (1) nnn n nnnnnnn n nn nn 22222 2 2 1 121 )2(2 ) 1( ) 1(2 ) 1( 1 21 22 nn nn nn n 2 1 )2(2 ) 1( lim 2 nn nn n2 1 ) 1(2 ) 1( lim 2 nn nn n 2 1 ) 2 2 1 1 (lim 222 nnn n nnnn n . (2) 222 )()2() 1( ) 1)()3)(2()2)(1( nn n n n n n nnnn n nn n nn n )(1()2)(1() 1(nnnn n nn n nn n 121 ) 12 1 1 1 ( ) 1)()3)(2()2)(1(n n n n nn n nnnn n nn n nn n n n 21 1 2 2 2 2 n n n n2 2 (2 2 ( ( 1 1 n n( ( n n 2 2 1 1 )2 )2 1 1 ( (limlim 2 n n n 2 1 2 1 1) 2 11 ( )(1()2)(1() 1(nn n nnnn n nn n nn n 2 1 )()2() 1( 121 222 nn n n n n n n n n n 2 1 ) 121 (lim n n n n n2 1 2 1 lim n 222 1 lim. (1)(2)()2 n nnn nnnn 3.10 1 x nn xx6 1 , 2 , 1n n x. 10 1 x4 2 x 21 xx. kn 1k 1kk xx 211 66 kkkk xxxx n x. 10 1 x nn xx6 1 0 n x , 2 , 1n n x n x.Axn n lim. 1 limlim6, nn nn xx AA6 06 2 AA 2A3A() 3lim n n x. 1 6 6 6 6 k k 6 6 6 6 k k 1 1 x6 6 k k 1 1 1 1 1 1 . . 10 1 x x , 2 , 1 4 x xxx x cba 1 03 lim. x xxx x x xxx x cbacba 1 0 1 0 ) 3 3 1 (lim) 3 (lim 3 3 3 3 0 3 lim1 3 xxx xxx abc x xxx abc x abc 1111 3 lim lim 3 0 3 0 xxx xxxabc abc xxx x x x ee 3 1(ln lnln ) ln3 3 . abc abc eeabc 5 n. ) 1( 1 n n n . 5.3 A (1) 22 4 sinzx yxyy; (2) ) 1, 0(xxxz y ; (3) 323 3zx yxyxy; (4) 22 1;zxyxy (5) ; xy zxe (6)(cossin ) x zeyxy; (1) 24sin z xyy x 2 4 cos2 z xxyy y 2 2 2 z y x 2 24cos z xy x y 2 24cos z xy y x 2 2 4 sin2 z xy y (2) 1y yx x z xx y z yln 2 2 2 (1) y z y yx x 2 2 2 (ln ) y z xx y . . 5.3 5.3 A A 22 zx yxyyzx yxyyzx yxyy; (2) ; (2) 323 zx yxyxyzx yxyxyzx yxyxyzx yxyxy; (4) 2 11 ln yy z yxxx x y 2 11 ln yy z yxxx y x (3) yyyx x z 322 33xxyyx y z 23 92 2 2 2 6xy x z 2 3 2 218 z xxy y 196 22 2 yyx yx z 196 22 2 yyx xy z (4) x xxxxyyx x z 1 22 002yxyx2; y yyyxyyx y z 1 22 xy2; 20222 2 2 x xxyxyx x z ; 11022 2 y yyyxyx yx z ; 11022 2 x xxxyxy xy z ; 20222 2 2 y yyxyxy x z . (5) xyxy z exye x 2xy z x e y 2 22 2 2 xyxyxyxyxy z yeyexy eyexy e x 2 3 2 xy z x e y 2 22 2 xyxyxyxyxy z xexex yexex ye x y 2 2 2 xyxy z xex ye x y (6)cos1 sin x z eyxy x ( sincos ) x z eyxy y 2 2 cos2 sin x z eyxy x 2 2 ( cossin ) x z eyxy y 10101010 y y y1; ; 10 010 0 x x xyxyxyxy exyeexye xyxyxyxyxyxy exye 2 sin1 cos x z eyxy x y 2 sin1 cos x z eyxy x y 2. 22 lnyxz0 2 2 2 2 y z x z )ln( 2 1 ln 2222 yxyxz 22 yx x x z 22 yx y y z 222 22 222 22 2 2 )()( 2)( yx xy yx xxyx x z 222 22 222 22 2 2 )()( 2)( yx yx yx yyyx y z 0 )()( 222 22 222 22 2 2 2 2 yx xy yx yx y z x z B 1. ),(yxfD 2 2 x f 2 2 y f 2 f x yxy f 2 D A xy f yx f 22 B),(yxfD C),(yxfDD 2. 1 , 23 y x ( )(0)n y= 12 ( 1)!( ) . 33 nn n 1 (23) ,yx 223 1 2(23) ,1 ( 2) 2 (23)yxyx ( )1 ( 1)! 2 (23) nnnn ynx ( )(0)n y= 12 ( 1)!( ) . 33 nn n )()2 222 ) ) 2 2 y y yx y y 0 )()2 2222) ) 2 2 y y x x B xy xy f xy y 3.),(vuf,fxg yyxg yg y 0,g y )( )( 2 2 vg vg vu f . ,uxg yvy),(vuf. ,uxg yvy),(vuf)( )( vg vg u )( 1 vgu f )( )( 2 2 vg vg vu f . 4.z=)32sin(yx x z y z xx z yy z xy z. x z=)32cos(2)32()32cos(yxyxyx x , y z=)32cos(3)32()32cos(yxyxyx y , xx z=)32sin(4)32cos(2yxyxx, yy z=)32sin(9)32cos(3yxyx y , xy z=)32sin(6)32cos(2yxyxy. 5.4 A 1. (1) sinzuvt,cos , t ue vt dt dz (2) xyyxzsin, 2 dx dz (3) 1 sin(),ln ,cos , xy ueyz xyt zt tdt du (4) ),(),(),( 2 tytx y x t x y tfu, f dt du (1) t z dt dv v z dt du u z dt dz sincos t v eutt 3 )32)3y yx3 3, 32 2sin(sin(2 2sin(sin()3, )32)3sin(3 32sin( cossincos tt t eettcossincos . t ettt (2) dz z dxz dy dtx dty dt zz dy xy dt 1cos 2cos2. 22 sin x xxx yx (3) )lnsin cos )(lncos(cos) ln1 )(lnsin(cos 2 1 2 1 tt t t ttt t t ttt dt du tt (4) 12 22 ( )( )( )( ) ( )( ) ( )( )( ) 2 ( )( )( ) duttttttttt ftft dtttt 2. (1) )( 2 xyxyfz (2) ),()(xyyxfyxz (3) )(),(yxy x y fz (4) 22 ( , (, )zf x yxy. (1) )( 2)(),( )( 2222232 xyfyxxyxf y z xyfxyxyyf x z (2) 1212 (,)()(),(,)()() zz f xy xyxyfyff xy xyxyfxf xy (3) 1212 2 1 ( )()(),( )(1() zyyzy ffxyffxy xxxyx x (4) 131232 2, 2. zz fxfyff xy 3. (1) 222 ),( zyx ezyxfuyxzsin 2 x u y u (2) yxvyxauvuez ax cos,sin),( x z y z (3) 22 (,), xy zf xye z x . z y (1) x z z f x f x u yxzexe zyxzyx sin222 222222 yxyx eyxx 2422 sin22 )sin21 (2 y z z f y f y u yxzeye zyxzyx cos22 2 222222 ( )()(),( )(1() zz (,)()(),(,)()()(,)()(),(,)()() 121212 (,)()(),(,)()() xyxy zzzzzz (,)()(),(,)()()(,)()(),(,)()()(,)()(),(,)()()(,)()(),(,)()()(,)()(),(,)()()(,)()(),(,)()()(,)()(),(,)()()(,)()(),(,)()()(,)()(),(,)()()(,)()(),(,)()() zzzz (,)()(),(,)()()(,)()(),(,)()()(,)()(),(,)()()(,)()(),(,)()()(,)()(),(,)()()(,)()(),(,)()()(,)()(),(,)()()(,)()(),(,)()()(,)()(),(,)()()(,)()(),(,)()() 121212 (,)()(),(,)()()(,)()(),(,)()()(,)()(),(,)()()(,)()(),(,)()() 12121212 (,)()(),(,)()() 1212 xyxy ( )()(),( )(1()( )()(),( )(1()( )()(),( )(1()( )()(),( )(1()( )()(),( )(1()( )()(),( )(1()( )()(),( )(1()( )()(),( )(1()( )()(),( )(1()( )()(),( )(1()( )()(),( )(1()( )()(),( )(1()( )()(),( )(1()( )()(),( )(1()( )()(),( )(1()( )()(),( )(1()( )()(),( )(1()( )()(),( )(1()( )()(),( )(1()( )()(),( )(1()( )()(),( )(1()( )()(),( )(1()( )()(),( )(1()( )()(),( )(1()( )()(),( )(1() ( , (, )( , (, ). . )( 2 2 xy (,)()(),(,)()()(,)()(),(,)()()(,)()(),(,)()() xy (,)()(),(,)()()(,)()(),(,)()()(,)()(),(,)()()(,)()(),(,)()() xy zyzy ( )()(),( )(1()( )()(),( )(1()( )()(),( )(1() zyzy ( )()(),( )(1()( )()(),( )(1()( )()(),( )(1()( )()(),( )(1()( )()(),( )(1()( )()(),( )(1()( )()(),( )(1()( )()(),( )(1()( )()(),( )(1()( )()(),( )(1()( )()(),( )(1() 232 xy fxfyfffxfyff 232 2, 2.2, 2. 232 fxfyfffxfyfffxfyff2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2. 232 2, 2.2, 2.2, 2.2, 2.2, 2. xy fxfyff2, 2. 2 x2 e),),),) yxyx eyyxy 2422 sin4 )cossin(2 (2) ( , , )() ax zf x u veuv x v v f x u u f x f x z xexaevuae axaxax sincos)(2sin) 1( 2 ayxaeax .2) 1(1 axaxax eee y v v f y u u f y z (3) 22, . xy uxyve( , )uf u v 2 xy zfufvff xey xuxvxuv 12 2. xy xfyef ( 2 ) xy zfufvff yex yuyvyuv 12 2. xy yfxef 4 (1) ),( x y y z fxu k ku z u z y u y x u x (2) 222 1 zyx u0 2 2 2 2 2 2 z u y u x u (3) 2 () 2 y zxy x 22 3 0 2 zz xxyy xy (1) 12 2121 2 1 (,), k kkk uzyuzux kxfxyfxfff xy xyyxzy z u z y u y x u x 2121 (,) k kkk zyzyx z kx fx yfxfffku y xyxy . (2) 2 5 2 3 )( 3 , )( 222 2222 2 2 222 zyx xzyx x u zyx x x u , z z y y u u y y xy y y 2 2u u 1212 2. 12 12 2. yfxef 1212 2.2.2. 121212 2.2.2.2. 121212 kuku z z z 2 2 2 2 2 y y u x kxfxyfxfff kkkkkk121212kkkkkkkkk121212 uzyuzuxuzyuzux kkkkkk1212kkkkkk121212 kxfxyfxfffkxfxyfxfff uzyuzuxuzyuzux (,), kkkkkk1212 (,), 12 kxfxyfxfff 2 2 y u 2 5 2 5 )( 3 , )( 3 222 2222 2 2 222 2222 zyx zzyx z u zyx yzyx 0 2 2 2 2 2 2 z u y u x u . (3) 2 2 () 2 zy yxy xx () zy xxy yx 2 zz xxy xy 2 2 2 ()() 2 yy xyxyxyxxy xx 2 2222 3 ()() 22 y x yxyyx yxyy 22 3 0 2 zz xxyy xy 5),(yxzz0),(zyxzfdz. 0),(zyxzf 12 ()()0,f d xzf d yz 12 ()()0f zdxxdzfdydz 12 12 1 ()dzzf dxf dy xff . 6 (1) ( , ) ( , ), f x y uxf x y y 2u x y (2) f x y xfxyf y z),()( 1 yx z 2 (3) fxyyxfz,)(,)(, yx z 2 22 2 zz 22 xxyyxxyy xyxy 2222 xxyyxxyyxxyyxxyyxxyy xyxyxy 0),0),) )yzy f 3 2222 x yxyyx yxyyx yxyyx yxyyx yxyyx yxyy 2222 x yxyyx yxyy 0 ),(yf 1212 f d xzf d yzf d xzf d yz 1212 ()()0,()()0,()()0, 12121212 f d xzf d yz()()0,()()0,()()0,()()0, 1212 1212 f zdxxdzfdydzf zdxxdzfdydz 1212 ()()0()()0()()0 121212 f zdxxdzfdydzf zdxxdzfdydzf zdxxdzfdydz()()0()()0 (4) 0 0 0 , )( ),( 22 22 22 22 yx yx yx yxxy yxf 22 (0,0)(0,0) ,. ff x yy x (1) 1 ( , )( , )( , ), xx u fx yf x yxfx y xy 2 2 11 ( , )( , )( , )( , ) xxyyxy u fx yfx yfx yxfx y x yyy . (2)()( )( ) zyyy fxyff xxxx 2 2 ()( ) zyy xfxyf x yxx . (3) 12 ( ) z fxf x 2 111222 ( )( )( ) 1( ) z x fxyfy f x y . (4) 0 ( ,0)(0,0) (0,0)lim0. x x f xf f x 0y x yfyxf yf x x ), 0(),( lim), 0( 0 ,)0 )( ( 1 lim 22 22 0 y yx yxxy x x 0 (0, )(0,0) (0,0)lim1, xx xy y fyf f y , 0)0 , 0( y f 0x ( ,0) y fxx. 0 ( ,0) (0,0) (0,0)lim1. yy yx x fxf f x 7.)(),(min)( 21 xfxfxF2 , 0, x xfxxf 1 )(,)( 21 . 2 , 0),(xxF. x x ) )yfyf 0. ( ( ( 1 1 limlim 0 0 xyxy x x x x (0,0)lim(0,0)lim y fyf (0,0)lim(0,0)lim(0,0)lim )(xF ,01, ( ) 1 ,12. xx F x x x 10x ( )( )1 .F xx 21x 2 1 ) 1 ()( xx xF 1x 1 1)1 ( lim ) 1 ()1 ( lim) 1 ( 00 x x x FxF F xx . x x x FxF F xx 1 1 1 lim ) 1 ()1 ( lim) 1 ( 00 1 )1 ( lim )1 ( )1 (1 lim 00 xx x xx x xx . ) 1 () 1 (FF ) 1 (F 8.0 y yxexyf x , y F x yyxex 1,1, yy xy FeFxe x y Fdy dxF 11 11 yy yy ee xexe 9. y z z x ln,zf x y., y z x z ( , , )ln, xz F x y z zy x )1 ()1 )1) 1 (1x 1 (1 1 (1 ( 1 1. . x x x x 1 1 1 1 lim 0 1 ( limlim 0 0 1 (x ) 1 ( ) 1 (F) 1 ( ) 1 ( 0 0yxexyxex y y F x yyxexF x yyxex, y y F x yyxexF x yyxexF x yyxex, y y 2 11 , xy yz FF zzyy 22 1 . z xxz F zzz 2 1 , x z Fzz z xz xFxz z 2 2 1 . () y z F zzy xz yFy xz z 10. 22 10xyyf x0x 22 ,1F x yxy 2 ,2 ,0,10,0,120, xyxy Fx Fy FF y x F F dx dy y x 0 0x dx dy 33 22 222 2 1 )( yy xy y y x xy y yxy dx yd 1 0 2 2 x dx yd 11. 3 z ezxy,zf x y 2 2 x z , ,3, z F x y zezxy ,1, z xy Fy Fe , 11 x zz z Fzyy xFee 22 22223 () 1 . (1)(1)(1) zz z z zz zy yeye zy e xe xeee 12. xy xz)1 ( x z y z . 2 2 2 ) y y2 y y y y 0 0x 3 2 1 1 yy3 x zf x yzf x yzf x yzf x yzf x y 3, 3,F x y zezxyF x y zezxyF x y zezxyF x y zezxy )1ln(lnxxyz, x x xyxy x z z1 1 )1ln( 1 , (1)ln(1), 1 xy zxy xyx xx (1)ln(1). xy z xxx y 13., dy dx , a b0. (1) 2 3 , , xat ybt (2) 2 2 2 2 , 1 3 , 1 at x t at y t (2) cos , sin , xat ybt (4) (1 sin ), cos . xtt ytt (1) 3 2 2 33 . 22 bt y tdybtb t dxx tata at (2) 2 2 2 3 1 2 1 at y ttdy dxx t at t 22 2 32 3 22 22 6132 666 , 11 atta tt ata tat y t tt 2 2 2 2122 , 1 atatt x t t 2 2 2 3 , 1 1 at t t (4) ) (1 sin ),xttxtt(1 sin ), yttytt xttxttxtt(1 sin ), 2 2222 btbbtb 2 3333 2 ataata222222 23 3 22 666 333 . 221 aatat a ttdy dxaatt (3) sin , dx at dt cos , dy bt dt dy dy dt dx dx dt cos sin bt at cot . b t a (4) coscossin . 1 sincos (1 sin ) y tttdyttt dxx tttt tt 14 2 2 . d y dx (1) 2 3 1, , xt ytt (2) 2 ln 1, arctan . xt ytt (1) 3 2 2 1 3 , 2 1 tt y tdyt dxx tt t 2 2 23 1 3 2113 . 24 dy d t dy dx d td y dx dt dx dxdxttt dt (2) y tdy dxx t 2 2 2 1 1 (arctan )1 1 , 2 ln(1)2 1 tt t t t t t 2 2 dy d dy dx d d ydx dt dx dxdx dt 2 2 1 12 . 2 4 1 t t t t t arctan .arctan .yttyttarctan .arctan .yttyttytt y ty t x t y ty t x t 2323 d d d dxdxdxdx 2323 dy dydydydydydy dxdxdxdx 2323 B 1)()( 1 yxyxyf x zf 2 . z x y )()()( 1 2 yxyxyf x y xyf x x z )()()()( 1 )( 1 2 yxyyxxyf yxyf x xyf xyx z )()()(yxyyxxyf y. 2),sin( 22 yxyefz x f 2 . z x y 12 sin2, x z eyfxf x 2 111122122 cossin (cos2)2 (cos2) xxxx z eyfey eyfyfx eyfyf x y 2 1111222 cossincos2( sincos )4. xxx eyfeyyfeyyxy fxyf 3.( , , ), y zf u x y uxef 2 . z x y 12 y zfuf fef xuxx 2 12 () y z fef x yy 12 1 yy ff efe yy 111132123 ()() yyyy efefxeffxef 2 111132123. yyyy efxefefxeff 4. 33 3zxyza 2z x y . 33 , ,3,F x y zzxyza 3, x Fyz 3 y Fxz 2 33 z Fzxy. 111211121112111211121112 cossin (cos2)2 (cos2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论