高一生物必修2第四章第三节遗传密码子的破译.ppt_第1页
高一生物必修2第四章第三节遗传密码子的破译.ppt_第2页
高一生物必修2第四章第三节遗传密码子的破译.ppt_第3页
高一生物必修2第四章第三节遗传密码子的破译.ppt_第4页
高一生物必修2第四章第三节遗传密码子的破译.ppt_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第3节 遗传密码子的破译,山西师范大学,问题探讨,我们知道了核酸中的碱基序列就是遗传信息,翻译实际上就是将mRNA中的碱基序列翻译为蛋白质的氨基酸序列,那么碱基序列与氨基酸序列是如何对应的呢?,研究的背景:,“中心法则”提出后更为明确地指出了遗传信息传递的方向,总体上来说是从DNARNA蛋白质。那DNA和蛋白质之间究竟是什么关系?或者说DNA是如何决定蛋白质?这个有趣而深奥的问题在五十年代末就开始引起了一批研究者的极大兴趣。,1954年科普作家伽莫夫G.Gamor对破译密码首先提出了挑战。当年,他在自然Nature杂志首次发表了遗传密码的理论研究的文章,指出三个碱基编码一个氨基酸。,遗传密码的试拼与阅读方式的探索,接下来,人们不禁又要问在三联体中的每个碱基作为信息只读一次还是重复阅读呢?以重叠和非重叠方式阅读DNA序列会有什么不同呢?,遗传密码的试拼与阅读方式的探索,思考:,当图中DNA的第三个碱基(T)发生改变时,如果密码是非重叠的,这一改变将影响_个氨基酸,如果是重叠的又将影响_个氨基酸。,1,3,在图中DNA的第三个碱基(T)后插入一个碱基A,如果密码是非重叠的,这一改变将影响_个氨基酸,如果密码是重叠的,又将影响_个氨基酸。,3,3,遗传密码子的验证(克里克的实验),1961年,克里克对T4噬菌体DNA上的一个基因进行处理,使DNA增加或减少碱基。 通过这样的方法他们发现加入或减少1个和2个碱基都会引起噬菌体突变,无法产生正常功能的蛋白质,而加入或减少3个碱基时却可以合成正常功能的蛋白质。,为什么会这样呢?,这只能解释为:遗传密码中3个碱基编码1个氨基酸。,请比较分析下图:插入_个碱基对原有氨基酸序列影响最小.,GGTTCGCACGCTTTGAGC,插一个碱基,GGTATCGCACGCTTTGAGC,插二个碱基,GGTAATCGCACGCTTTGAGC,插三个碱基,GGTAAATCG CACGCTTTG AGC,3,进一步分析上图:,减少_个碱基对原有氨基酸序列影响最小。,3,克里克是第一个用实验证明遗传密码中3个碱基编码1个氨基酸的科学家。这个实验还同时表明:遗传密码从一个固定的起点开始,以非重叠的方式阅读,编码之间没有分隔符。,遗传密码对应规则的发现,1961-1962年,尼伦伯格(M.W.Nirenberg,1927)和马太(H.Matthaei) 的实验 :,遗传密码对应规则的发现,这一结果不仅证实了无细胞系统的成功,同时还表明UUU是苯丙氨酸的密码子。 这是第一个遗传密码子被破译。尼伦伯格的实验巧妙之处在于利用无细胞系统进行体外合成蛋白质,他这富有创新的实验方法为他带来了重大的成功!,遗传密码对应规则的发现,在接下来的六七年里,科学家沿着体外合成蛋白质的思路,不断地改进实验方法,破译出了全部的密码子,并编制出了密码子表。这项工作成为生物学史上的一个伟大的里程碑!为人类探索和提示生命的本质的研究向前迈进一大步,为后面分子遗传生物学的发展有着重要的推动作用。,小结,1954年科普作家伽莫夫用数学的方法推断3个碱基编码一个氨基酸。 1961年克里克第一个用T4噬菌体实验证明了遗传密码中3个碱基编码一个氨基酸。 1961年尼伦伯格和马太利用无细胞系统进行体外合成破译了第一个遗传密码。 1969年科学家们破译了全部的密码。,小结,我们注意整个破译过程中科学家思维的变化,伽莫夫通过数学的排列组合的计算来推测密码子是由三个碱基组成的,克里克则是巧妙地设计实验,使DNA增加或减少碱基的方法从实验上证明了伽莫夫的三联体密码子的推测,由理论走向实验,为密码子的破译迈出重要的一步。而尼伦伯格的实验则更富有创新性,他建立巧妙的无细胞系统进行体外蛋白质合成,成功地破译了第一个密码子,随后的方法不断创新最终破译了所有的密码子。他的贡献不仅仅在于对遗传密码的破译,更重要的也在对生物研究方法上开启了新的思维方式。,归结起来,我们看到,敏锐、大胆、睿智和创新是科学家的重要素养,也正如尼伦伯格在1968年诺贝尔生理学或医学奖获奖时说的:一个善于捕捉细节的人才是能领略事物真谛的人。,练习,C,(1)在下列基因的改变中,合成出具有正常功能蛋白质的可能性最大的是:( ) A在相关的基因的碱基序列中删除或增加一个碱基对 B在相关的基因的碱基序列中删除或增加二个碱基对 C在相关的基因的碱基序列中删除或增加三个碱基对 D在相关的基因的碱基序列中删除或增加四个碱基对,例2揭示基因化学本质的表述是( ) A基因是遗传物质的功能单位 B基因是有遗传效应的DNA片段 C基因是蕴含遗传信息的核苷酯序列 D基因在染色体上呈线性排列 解析:考查基因的概念,从遗传学角度,基因是控制生物性状的遗传物质的结构和功能单位;从细胞学角度,基因在染色体上呈线性排列;从分子学角度,基因是具有遗传效应的DNA片段,这也就揭示了基因的化学本质是DNA。 答案:B,例3、科学家已经证明密码子是mRNA上决定一个氨基酸的三个相邻的碱基。 (1)据理论推测,mRNA上的三个相邻的碱基可以构成_种排列方式,实际上决定氨基酸的密码子共有_种。 (2)第一个被科学家破译的是决定苯丙氨酸的密码子UUU。1959年,科学家M.Nireber和S.Ochoa用人工合成只含U的RNA为模版,在一定条件下合成只有苯丙氨酸组成的多肽,这里一定的条件应是_。 (3)继上述实验后,又有科学家用C、U两种碱基相同排 列的mRNA为模版,检验一个密码子是否含有三个碱基。 如果密码子是连续翻译的: 假如一个密码子中含有两个或四个碱基,则该RNA指导合成的多肽中应由_种氨基酸组成。 假如一个密码子中含有三个碱基,则该RNA指导合成的多肽链中应由_种氨基酸组成。,解析:(1)mRNA上碱基共有A、G、C、U四种,三个相邻的碱基构成一个密码子,根据数学原理应有43即64种。这其中有三种是终止密码子,实际上mRNA上决定氨基酸的 密码子共有61种。(2)这里一定的条件是指基因控制蛋白质合成的第二阶段既翻译阶 段所需条件。(3)C、U两种碱基相间排列,假如一个密码子中含有两个或四个碱基, 则密码子为CU或CUCU,决定一种氨基酸组成。假如一个密码子中含有三个碱基,则密码子CUC、UCU,决定两种氨基酸组成。 答案:(1)4364 61 (2)tRNA、氨基酸、能量、酶、核糖体等 (3) 1 2,(4)例1已知某tRNA一端的三个碱基序列是GAU,它转运的是亮氨酸,那么决定此氨基酸的密码子是下面哪个碱基序列转录来的?( ) A、GAT B、GAU C、CUA D、CTA 解析:从转录、翻译逆行推理。tRNA的特定的三个碱基是GAU,那么根据碱基互补配对原则,决定此氨基酸的mRNA上的密码子是CUA。mRNA是由DNA转录而来的,所以mRNA上CUA是由DNA上的GAT转录来的. 答案:A,(5)最早提出3个碱基编码一个氨基酸 的科学家和首次用实验的方法加以证明的科学家分别是:( ) A克里克、伽莫夫 B克里克、沃森式化 C摩尔

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论