已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第1课时正弦、余弦函数的周期性与奇偶性学习目标:1.了解周期函数、周期、最小正周期的定义.2.会求函数yAsin(x)及yAcos(x)的周期(重点)3.掌握函数ysin x,ycos x的奇偶性,会判断简单三角函数的奇偶性(重点、易混点)自 主 预 习探 新 知1函数的周期性(1)周期函数:对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有f(xT)f(x),那么这个函数的周期为T.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期2正弦函数、余弦函数的周期性和奇偶性函数ysin xycos x周期2k(kZ且k0)2k(kZ且k0)最小正周期22奇偶性奇函数偶函数基础自测1思考辨析(1)若sinsin,则是函数ysin x的一个周期()(2)所有的周期函数都有最小正周期()(3)函数y是奇函数()解析(1).因为对任意x,sin与sin x并不一定相等(2).不是所有的函数都有最小正周期,如函数f(x)5是周期函数,就不存在最小正周期(3).函数y的定义域为x|2kx2k,kZ,不关于原点对称,故非奇非偶答案(1)(2)(3)2函数y2sin是()A周期为的奇函数B周期为的偶函数C周期为2的奇函数D周期为2的偶函数By2sin2cos 2x,它是周期为的偶函数3若函数yf(x)是以2为周期的函数,且f(5)6,则f(1)_.6由已知得f(x2)f(x),所以f(1)f(3)f(5)6.合 作 探 究攻 重 难三角函数的周期问题及简单应用求下列函数的周期:(1)ysin;(2)y|sin x|. 【导学号:84352085】思路探究(1)法一:寻找非零常数T,使f(xT)f(x)恒成立法二:利用yAsin(x)的周期公式计算(2)作函数图象,观察出周期解(1)法一:(定义法)ysinsinsin,所以周期为.法二:(公式法)ysin中2,T.(2)作图如下:观察图象可知周期为.规律方法求三角函数周期的方法:(1)定义法:即利用周期函数的定义求解(2)公式法:对形如yAsin(x)或yAcos(x)(A,是常数,A0,0)的函数,T.(3)图象法:即通过观察函数图象求其周期提醒:y|Asin(x)|(A0,0)的最小正周期T.跟踪训练1利用周期函数的定义求下列函数的周期(1)ycos 2x,xR;(2)ysin,xR.解(1)因为cos 2(x)cos(2x2)cos 2x,由周期函数的定义知,ycos 2x的周期为.(2)因为sinsinsin,由周期函数的定义知,ysin的周期为6.三角函数奇偶性的判断判断下列函数的奇偶性:(1)f(x)sin;(2)f(x)lg(1sin x)lg(1sin x);(3)f(x).思路探究解(1)显然xR,f(x)cosx,f(x)coscosxf(x),f(x)是偶函数(2)由得1sin x1,解得定义域为,f(x)的定义域关于原点对称又f(x)lg(1sin x)lg(1sin x),f(x)lg1sin(x)lg1sin(x)lg(1sin x)lg(1sin x)f(x),f(x)为奇函数(3)1sin x0,sin x1,xR且x2k,kZ.定义域不关于原点对称,该函数是非奇非偶函数规律方法1.判断函数奇偶性应把握好的两个方面:一看函数的定义域是否关于原点对称;二看f(x)与f(x)的关系2对于三角函数奇偶性的判断,有时可根据诱导公式先将函数式化简后再判断提醒:研究函数性质应遵循“定义域优先”的原则跟踪训练2判断下列函数的奇偶性:(1)f(x)cosx2sin x;(2)f(x). 解(1)f(x)sin 2xx2sin x,又xR,f(x)sin(2x)(x)2sin(x)sin 2xx2sin xf(x),f(x)是奇函数(2)由得cos x,f(x)0,x2k,kZ,f(x)既是奇函数又是偶函数三角函数的奇偶性与周期性的综合应用探究问题1试举例说明哪些三角函数具有奇偶性?提示:奇函数有y2sin x,ysin 2x,y5sin 2x,ysin xcos x等偶函数有ycos 2x1,y3cos 5x,ysin xsin 2x等2若函数yf(x)是周期T2的周期函数,也是奇函数,则f(2 018)的值是多少?提示:f(2 018)f(01 0092)f(0)0.(1)下列函数中是奇函数,且最小正周期是的函数是()Aycos|2x|By|sin 2x|CysinDycos(2)定义在R上的函数f(x)既是偶函数,又是周期函数,若f(x)的最小正周期为,且当x时,f(x)sin x,则f等于()AB. CD.思路探究(1)先作出选项A,B中函数的图象,化简选项C、D中函数的解析式,再判断奇偶性、周期性(2)先依据f(x)f(x)化简f;再依据f(x)是偶函数和x,f(x)sin x求值(1)D(2)D(1)ycos|2x|是偶函数,y|sin 2x|是偶函数,ysincos 2x是偶函数,ycossin 2x是奇函数,根据公式得其最小正周期T.(2)ffffffsin.母题探究:1.若本例(2)中的“偶函数”改为“奇函数”,“”改为“”,其他条件不变,结果如何?解ffffsin.2若本例(2)中的“”改为“”,其他条件不变,求f.解f(x)的周期为,且为偶函数,ffff.又ffffsin,.规律方法1.三角函数周期性与奇偶性的解题策略探求三角函数的周期,常用方法是公式法,即将函数化为yAsin(x)或yAcos(x)的形式,再利用公式求解2与三角函数奇偶性有关的结论(1)要使yAsin(x)(A0)为奇函数,则k(kZ);(2)要使yAsin(x)(A0)为偶函数,则k(kZ);(3)要使yAcos(x)(A0)为奇函数,则k(kZ);(4)要使yAcos(x)(A0)为偶函数,则k(kZ)当 堂 达 标固 双 基1如图所示的是定义在R上的四个函数的图象,其中不是周期函数的图象的是()D观察图象易知,只有D选项中的图象不是周期函数的图象2函数f(x)sin 2x的奇偶性为()A奇函数B偶函数C既奇又偶函数D非奇非偶函数Af(x)sin 2x的定义域为R,f(x)sin 2(x)sin 2xf(x),所以f(x)是奇函数3函数f(x)sin,xR的最小正周期为_4由已知得f(x)的最小正周期T4.4若函数yf(x)是定义在R上的周期为3的奇函数且f(1)3,则f(5)_. 3由已知得f(x3)f(x),f(x)f(x),所以f(5)f(2)f(1)f(1)3.5
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2visio2024教程:图形界面全探索
- 2024年教案革新:《上学歌》设计理念与实践
- 《接触网施工》课件 4.9.2 电连接线压接
- 2024年教育革新:《生理学》电子教案在医学教育中的应用
- 2024年全新策划:列夫·托尔斯泰的7个维度
- 《拿来主义》课堂实践案例汇编2024
- 第45届世赛全国选拔赛初步技术思路(烘焙项目)
- 2024年教育创新:《圆柱的认识》课件实践与探索
- 2024年物流行业:《最佳路径》课件提高货车运输效率
- 静音木门厂账务处理-记账实操
- 【管理】朗诵《我骄傲-我是中国人》汇编课件
- 点估计的评价标准
- 全国导游基础知识-中国四大宗教-佛教
- 内部控制案例第07章案例20 华为内控
- 深化设计方案(完整版)
- 厦门大学《细胞生物学》期末试题及答案
- 假天狮传销课程
- 胆管癌的CT诊断与鉴别诊断知识ppt
- SJG 77-2020 房屋建筑工程造价文件分部分项和措施项目划分标准-高清现行
- 水平四(九年级)体育《耐力跑》教学设计及教案
- 《化学反应工程》课件第二章 气-固相催化反应本征及宏观动力学(简明)
评论
0/150
提交评论