




已阅读5页,还剩14页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
7.3二元一次不等式(组)与简单的线性规划问题最新考纲考情考向分析1.会从实际情境中抽象出二元一次不等式组2.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组3.会从实际情境中抽象出一些简单的二元一次线性规划问题,并能加以解决.以画二元一次不等式(组)表示的平面区域、目标函数最值的求法为主,兼顾由最优解(可行域)情况确定参数的范围,以及简单线性规划问题的实际应用,加强转化与化归和数形结合思想的应用意识本节内容在高考中以选择、填空题的形式进行考查,难度中低档.1二元一次不等式表示的平面区域一般地,直线l:axbyc0把直角坐标平面分成了三个部分:(1)直线l上的点(x,y)的坐标满足axbyc0;(2)直线l一侧的平面区域内的点(x,y)的坐标满足axbyc0;(3)直线l另一侧的平面区域内的点(x,y)的坐标满足axbyc0或AxByC0时,区域为直线AxByC0的上方;(2)当B(AxByC)0表示的平面区域一定在直线AxByC0的上方()(3)点(x1,y1),(x2,y2)在直线AxByC0同侧的充要条件是(Ax1By1C)(Ax2By2C)0,异侧的充要条件是(Ax1By1C)(Ax2By2C)0.()(4)第二、四象限表示的平面区域可以用不等式xy0表示()(5)线性目标函数的最优解是唯一的()(6)最优解指的是使目标函数取得最大值或最小值的可行解()(7)目标函数zaxby(b0)中,z的几何意义是直线axbyz0在y轴上的截距()题组二教材改编2不等式组表示的平面区域是()答案B解析x3y60表示直线x3y60及其右下方部分,xy20表示直线xy20的左上方部分,故不等式组表示的平面区域为选项B中的阴影部分3投资生产A产品时,每生产100吨需要资金200万元,需场地200平方米;投资生产B产品时,每生产100吨需要资金300万元,需场地100平方米现某单位可使用资金1 400万元,场地900平方米,则上述要求可用不等式组表示为_(用x,y分别表示生产A,B产品的吨数,x和y的单位是百吨)答案解析用表格列出各数据AB总数产品吨数xy资金200x300y1 400场地200x100y900所以不难看出,x0,y0,200x300y1 400,200x100y900.题组三易错自纠4下列各点中,不在xy10表示的平面区域内的是()A(0,0) B(1,1) C(1,3) D(2,3)答案C解析把各点的坐标代入可得(1,3)不适合,故选C.5(2017日照一模)已知变量x,y满足则z()2xy的最大值为()A. B2 C2 D4答案D解析作出满足不等式组的平面区域,如图阴影部分所示,令m2xy,则当m取得最大值时,z()2xy取得最大值由图知直线m2xy经过点A(1,2)时,m取得最大值,所以zmax()2124,故选D.6已知x,y满足若使得zaxy取最大值的点(x,y)有无数个,则a的值为_答案1解析先根据约束条件画出可行域,如图中阴影部分所示,当直线zaxy和直线AB重合时,z取得最大值的点(x,y)有无数个,akAB1,a1.题型一二元一次不等式(组)表示的平面区域命题点1不含参数的平面区域问题典例 (2017黄冈模拟)在平面直角坐标系中,已知平面区域A(x,y)|xy1,且x0,y0,则平面区域B(xy,xy)|(x,y)A的面积为()A2 B1C. D.答案B解析对于集合B,令mxy,nxy,则x,y,由于(x,y)A,所以即因此平面区域B的面积即为不等式组所对应的平面区域(阴影部分)的面积,画出图形可知,该平面区域的面积为21,故选B.命题点2含参数的平面区域问题典例 若不等式组表示的平面区域的形状是三角形,则a的取值范围是()Aa B0a1C1a D0a1或a答案D解析作出不等式组表示的平面区域(如图中阴影部分所示)由图知,要使原不等式组表示的平面区域的形状为三角形,只需动直线l:xya在l1,l2之间(包含l2,不包含l1)或l3上方(包含l3)故选D.思维升华 (1)求平面区域的面积对平面区域进行分析,若为三角形应确定底与高,若为规则的四边形(如平行四边形或梯形),可利用面积公式直接求解,若为不规则四边形,可分割成几个三角形,分别求解再求和即可(2)利用几何意义求解的平面区域问题,也应作出平面图形,利用数形结合的方法求解跟踪训练 (1)不等式(x2y1)(xy3)0在坐标平面内表示的区域(用阴影部分表示),应是下列图形中的()答案C解析由(x2y1)(xy3)0,可得或画出平面区域后,只有选项C符合题意(2)已知约束条件表示面积为1的直角三角形区域,则实数k的值为()A1 B1 C0 D2答案A解析由于x1与xy40不可能垂直,所以只有可能xy40与kxy0垂直或x1与kxy0垂直当xy40与kxy0垂直时,k1,检验知三角形区域面积为1,即符合要求当x1与kxy0垂直时,k0,检验不符合要求题型二求目标函数的最值问题命题点1求线性目标函数的最值典例 (2017全国)设x,y满足约束条件则z2xy的最小值是()A15 B9 C1 D9答案A解析不等式组表示的可行域如图中阴影部分所示将目标函数z2xy化为y2xz,作出直线y2x,并平移该直线知,当直线y2xz经过点A(6,3)时,z有最小值,且zmin2(6)315.故选A.命题点2求非线性目标函数的最值典例 (2016山东)若变量x,y满足则x2y2的最大值是()A4 B9 C10 D12答案C解析满足条件的可行域如图阴影部分(包括边界)所示,x2y2是可行域上动点(x,y)到原点(0,0)距离的平方,显然,当x3,y1时,x2y2取得最大值,最大值为10.故选C.命题点3求参数值或取值范围典例 变量x,y满足约束条件若z2xy的最大值为2,则实数m等于()A2 B1 C1 D2答案C解析对于选项A,当m2时,可行域如图(1),直线y2xz的截距可以无限小,z不存在最大值,不符合题意,故A不正确;对于选项B,当m1时,mxy0等同于xy0,可行域如图(2),直线y2xz的截距可以无限小,z不存在最大值,不符合题意,故B不正确;对于选项C,当m1时,可行域如图(3),当直线y2xz过点A(2,2)时截距最小,z最大为2,满足题意,故C正确;对于选项D,当m2时,可行域如图(4),直线y2xz与直线OB平行,截距最小值为0,z最大为0,不符合题意,故D不正确故选C.思维升华 (1)先准确作出可行域,再借助目标函数的几何意义求目标函数的最值(2)当目标函数是非线性的函数时,常利用目标函数的几何意义来解题,常见代数式的几何意义有表示点(x,y)与原点(0,0)的距离,表示点(x,y)与点(a,b)的距离;表示点(x,y)与原点(0,0)连线的斜率,表示点(x,y)与点(a,b)连线的斜率(3)当目标函数中含有参数时,要根据临界位置确定参数所满足的条件跟踪训练 (1)已知实数x,y满足约束条件则z的取值范围为()A. B.C. D.答案B解析不等式组所表示的平面区域如图中阴影部分所示,z表示点D(2,3)与平面区域内的点(x,y)之间连线的斜率因为点D(2,3)与点B(8,1)连线的斜率为且C的坐标为(2,2),故由图知,z的取值范围为,故选B.(2)已知x,y满足约束条件若zaxy的最大值为4,则a等于()A3 B2 C2 D3答案B解析根据已知条件,画出可行域,如图阴影部分所示由zaxy,得yaxz,直线的斜率ka.当0k1,即1a1,即a1时,由图形可知此时最优解为点(0,0),此时z0,不合题意;当1k0,即0a1时,无选项满足此范围;当k1时,由图形可知此时最优解为点(2,0),此时z2a04,得a2.题型三线性规划的实际应用问题典例 某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5分钟,生产一个骑兵需7分钟,生产一个伞兵需4分钟,已知总生产时间不超过10小时若生产一个卫兵可获利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元(1)试用每天生产的卫兵个数x与骑兵个数y表示每天的利润(元);(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?解(1)依题意每天生产的伞兵个数为100xy,所以利润5x6y3(100xy)2x3y300.(2)约束条件为整理得目标函数为2x3y300,作出可行域,如图阴影部分所示,作初始直线l0:2x3y0,平移l0,当l0经过点A时,有最大值,由得最优解为A(50,50),此时max550元故每天生产卫兵50个,骑兵50个,伞兵0个时利润最大,且最大利润为550元思维升华 解线性规划应用问题的一般步骤(1)审题:仔细阅读材料,抓住关键,准确理解题意,明确有哪些限制条件,借助表格或图形理清变量之间的关系(2)设元:设问题中起关键作用(或关联较多)的量为未知量x,y,并列出相应的不等式组和目标函数(3)作图:准确作出可行域,平移找点(最优解)(4)求解:代入目标函数求解(最大值或最小值)(5)检验:根据结果,检验反馈跟踪训练 (2016全国)某高科技企业生产产品A和产品B需要甲、乙两种新型材料生产一件产品A需要甲材料1.5 kg,乙材料1 kg,用5个工时;生产一件产品B需要甲材料0.5 kg,乙材料0.3 kg,用3个工时生产一件产品A的利润为2 100元,生产一件产品B的利润为900元该企业现有甲材料150 kg,乙材料90 kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为_元答案216 000解析设生产A产品x件,B产品y件,根据所耗费的材料要求、工时要求等其他限制条件,得线性约束条件为目标函数z2 100x900y.作出可行域为图中的四边形,包括边界,顶点为(60,100),(0,200),(0,0),(90,0),在(60,100)处取得最大值,zmax2 10060900100216 000(元)线性规划问题考点分析 线性规划是高考重点考查的一个知识点这类问题一般有三类:目标函数是线性的;目标函数是非线性的;已知最优解求参数,处理时要注意搞清是哪种类型,利用数形结合解决问题典例 (2016天津)设变量x,y满足约束条件则目标函数z2x5y的最小值为()A4 B6 C10 D17答案B解析由约束条件作出可行域如图(阴影部分)所示,目标函数可化为yxz,在图中画出直线yx,平移该直线,易知经过点A时z最小又知点A的坐标为(3,0),zmin23506.故选B.1下列二元一次不等式组可表示图中阴影部分平面区域的是()A. B.C. D.答案C解析将原点坐标(0,0)代入2xy2,得20,于是2xy20所表示的平面区域在直线2xy20的右下方,结合所给图形可知C正确2(2017天津)设变量x,y满足约束条件则目标函数zxy的最大值为()A. B1 C. D3答案D解析画出可行域,如图中阴影所示由目标函数zxy,结合图像易知yxz过(0,3)点时z取得最大值,即zmax033.故选D.3直线2xy100与不等式组表示的平面区域的公共点有()A0个 B1个 C2个 D无数个答案B解析由不等式组画出可行域的平面区域如图阴影部分所示直线2xy100恰过点A(5,0),且其斜率k2kAB,即直线2xy100与平面区域仅有一个公共点A(5,0)4若不等式组表示的平面区域为三角形,且其面积等于,则m的值为()A3 B1 C. D3答案B解析不等式组表示的平面区域如图阴影部分,则图中A点纵坐标yA1m,B点纵坐标yB,C点横坐标xC2m,SABDSACDSBCD(22m)(1m)(22m),m1或m3,又当m3时,不满足题意,应舍去,m1.5某公司生产甲、乙两种桶装产品已知生产甲产品1桶需耗A原料1千克、B原料2千克;生产乙产品1桶需耗A原料2千克、B原料1千克每桶甲产品的利润是300元,每桶乙产品的利润是400元公司在生产这两种产品的计划中,要求每天消耗A、B原料都不超过12千克通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是()A1 800元 B2 400元 C2 800元 D3 100元答案C解析设每天生产甲种产品x桶,乙种产品y桶,则根据题意得x,y满足的约束条件为设获利z元,则z300x400y.画出可行域如图阴影部分画出直线l:300x400y0,即3x4y0.平移直线l,从图中可知,当直线l过点M时,目标函数取得最大值由解得即M的坐标为(4,4),zmax300440042 800(元)故选C.6(2018枣庄模拟)已知实数x,y满足约束条件则的最小值是()A2 B2 C1 D1答案D解析作出不等式组对应的平面区域如图阴影部分所示,的几何意义是区域内的点P(x,y)与定点A(0,1)所在直线的斜率,由图像可知当P位于点D(1,0)时,直线AP的斜率最小,此时的最小值为1.故选D.7(2017开封一模)若x,y满足约束条件且目标函数zax2y仅在点(1,0)处取得最小值,则a的取值范围是()A4,2 B(4,2) C4,1 D(4,1)答案B解析作出不等式组表示的平面区域如图中阴影部分所示,直线zax2y的斜率为k,从图中可看出,当12,即4a2时,仅在点(1,0)处取得最小值,故选B.8(2017河北“五个一名校联盟”质检)已知点P的坐标(x,y)满足过点P的直线l与圆C:x2y214相交于A,B两点,则|AB|的最小值是_答案4解析根据约束条件画出可行域,如图中阴影部分所示,设点P到圆心的距离为d,则求最短弦长,等价于求到圆心的距离d最大的点,即为图中的P点,其坐标为(1,3),则d,此时|AB|min24.9(2017全国)若x,y满足约束条件则z3x4y的最小值为_答案1解析不等式组表示的可行域如图阴影部分所示由z3x4y,得yxz.平移直线yx,易知经过点A时,直线在y轴上的截距最大,z有最小值由得A(1,1)zmin341.10(2018滕州模拟)已知O是坐标原点,点M的坐标为(2,1),若点N(x,y)为平面区域上的一个动点,则的最大值是_答案3解析依题意,得不等式组对应的平面区域如图中阴影部分所示,其中A,B,C(1,1)设z2xy,当目标函数z2xy过点C(1,1)时,z2xy取得最大值3.11(2017衡水中学月考)若直线y2x上存在点(x,y)满足约束条件则实数m的最大值为_答案1解析约束条件表示的可行域如图中阴影部分所示当直线xm从如图所示的实线位置运动到过A点的虚线位置时,m取最大值解方程组得A点坐标为(1,2)m的最大值为1.12若点(1,1)在不等式组表示的平面区域内,则m2n2的取值范围是_答案1,4解析由点(1,1)在不等式组表示的平面区域内可得画出不等式组表示的平面区域(如图阴影部分所示),则m2n2表示区域上的点到原点的距离的平方,所以1m2n24.13(2017石家庄二模)在平面直角坐标系中,不等式组(r为常数)表示的平面区域的面积为,若x,y满足上述约束条件,则z的最小值为()A1 BC. D答案D解析作出不等式组表示的平面区域,如图阴影部分所示,由题意,知r2,解得r2.z1,易知表示可行域内的点(x,y)与点P(3,2)的连线的斜率,由图可知,当点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 甲骨文拓印课件
- 六年级语文复习与应试技巧计划
- 纸箱创意素描课件
- 教师师德师风提升策略心得体会
- 2025秋季中学科学教研工作计划
- 高三数学提高班教学计划
- 三年级上学期语文阅读理解计划
- 保险合同采购协议
- 销售培训总结
- 小学数学二次培训
- 中医诊断学第七章八纲辨证课件
- 3 春夜喜雨课件(共16张PPT)
- DB32∕T 3921-2020 居住建筑浮筑楼板保温隔声工程技术规程
- [推选]高墩翻模施工技术PPT课件
- 现代住宅风水全解(含文字及图解)(课堂PPT)
- 中长期人才队伍建设战略规划
- Q∕GDW 12131-2021 干扰源用户接入电网电能质量评估技术规范
- 图解副热带高压
- 美标管壁厚等级表
- 话剧基础知识ppt课件
- 林海雪原阅读题及答案
评论
0/150
提交评论