立体几何中的向量方法(二).ppt_第1页
立体几何中的向量方法(二).ppt_第2页
立体几何中的向量方法(二).ppt_第3页
立体几何中的向量方法(二).ppt_第4页
立体几何中的向量方法(二).ppt_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

ZPZ,3.2.2立体几何中的向量方法(二),空间“距离”问题,用空间向量解决立体几何问题的“三步曲”,(1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题;,(2)通过向量运算,研究点、直线、平面之间的位置关系以及它们之间距离和夹角等问题;,(3)把向量的运算结果“翻译”成相应的几何意义.,(化为向量问题),(进行向量运算),(回到图形),空间“距离”问题,1. 空间两点之间的距离,根据两向量数量积的性质和坐标运算, 利用公式 或 (其中 ) ,可将两点距离问题 转化为求向量模长问题,例1 如图1,一个结晶体的形状为四棱柱,其中,以顶点A为端点的三条棱长都相等,且它们彼此的夹角都是60,那么以这个顶点为端点的晶体的对角线的长与棱长有什么关系?,解:如图1,设,化为向量问题,依据向量的加法法则,,进行向量运算,所以,回到图形问题,这个晶体的对角线 的长是棱长的 倍。,例1的晶体中相对的两个平面之间的距离是多少? 设AB=1 (提示:求两个平行平面的距离,通常归结为求两点间的距离),H,分析:面面距离,点面距离,解:, 所求的距离是,思考,2. 向量法求点到平面的距离,D,A,B,C,G,F,E,D,A,B,C,G,F,E,当E,F在公垂线同一侧时取负号 当d等于0是即为“余弦定理”,=(或),,a,b,C,D,A,B,CD为a,b的公垂线,则,A,B分别在直线a,b上,3. 异面直线间的距离,A,B,C,C1,取x=1,则y=-1,z=1,所以,E,A1,B1,小结,1. E为平面外一点,F为内任意一点, 为平面的法向量,则点E到平面的距离为,2. a,b是异面直线,E

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论