呼兰区第二中学2018-2019学年上学期高二数学12月月考试题含解析_第1页
呼兰区第二中学2018-2019学年上学期高二数学12月月考试题含解析_第2页
呼兰区第二中学2018-2019学年上学期高二数学12月月考试题含解析_第3页
呼兰区第二中学2018-2019学年上学期高二数学12月月考试题含解析_第4页
呼兰区第二中学2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精选高中模拟试卷呼兰区第二中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 已知 m、n 是两条不重合的直线,、是三个互不重合的平面,则下列命题中 正确的是( )A若 m,n,则 mnB若,则 C若m,n,则 mnD若 m,m,则 2 设是等比数列的前项和,则此数列的公比( )A-2或-1 B1或2 C.或2 D或-13 已知,则fff(2)的值为( )A0B2C4D84 设函数,其中,若存在唯一的整数,使得,则的取值范围是( )A B C D11115 已知函数f(x)=log2(x2+1)的值域为0,1,2,则满足这样条件的函数的个数为( )A8B5C9D276 如果ab,那么下列不等式中正确的是( )AB|a|b|Ca2b2Da3b37 已知M=(x,y)|y=2x,N=(x,y)|y=a,若MN=,则实数a的取值范围为( )A(,1)B(,1C(,0)D(,08 的大小关系为( )ABC.D9 若,则下列不等式一定成立的是( )ABCD10已知xR,命题“若x20,则x0”的逆命题、否命题和逆否命题中,正确命题的个数是( )A0B1C2D311 在区间上恒正,则的取值范围为( )A B C D以上都不对12已知抛物线与双曲线的一个交点为M,F为抛物线的焦点,若,则该双曲线的渐近线方程为 A、 B、 C、 D、二、填空题13已知点A(1,1),B(1,2),C(2,1),D(3,4),求向量在方向上的投影14x为实数,x表示不超过x的最大整数,则函数f(x)=xx的最小正周期是15【2017-2018第一学期东台安丰中学高三第一次月考】若函数在其定义域上恰有两个零点,则正实数的值为_16若数列满足,则数列的通项公式为 .17已知tan=,tan()=,其中,均为锐角,则=18已知f(x)=,则ff(0)=三、解答题19已知集合A=x|x1,或x2,B=x|2p1xp+3(1)若p=,求AB;(2)若AB=B,求实数p的取值范围20等差数列an的前n项和为Sna3=2,S8=22(1)求an的通项公式;(2)设bn=,求数列bn的前n项和Tn21(本小题满分10分)选修4-4:坐标系与参数方程已知曲线的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是(为参数).(1)写出曲线的参数方程,直线的普通方程;(2)求曲线上任意一点到直线的距离的最大值.22设函数()求函数的最小正周期;()求函数在上的最大值与最小值23某种产品的广告费支出x与销售额y(单位:百万元)之间有如下对应数据:x24568y3040605070(1)画出散点图;(2)求线性回归方程;(3)预测当广告费支出7(百万元)时的销售额24已知数列an满足a1=a,an+1=(nN*)(1)求a2,a3,a4;(2)猜测数列an的通项公式,并用数学归纳法证明呼兰区第二中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】C【解析】解:对于A,若 m,n,则 m与n相交、平行或者异面;故A错误;对于B,若,则 与可能相交,如墙角;故B错误;对于C,若m,n,根据线面垂直的性质定理得到 mn;故C正确;对于D,若 m,m,则 与可能相交;故D错误;故选C【点评】本题考查了空间线线关系面面关系的判断;熟练的运用相关的定理是关键2 【答案】D【解析】试题分析:当公比时,成立.当时,都不等于,所以, ,故选D. 考点:等比数列的性质.3 【答案】C【解析】解:20f(2)=0f(f(2)=f(0)0=0f(0)=2即f(f(2)=f(0)=220f(2)=22=4即ff(2)=f(f(0)=f(2)=4故选C4 【答案】D【解析】考点:函数导数与不等式1【思路点晴】本题主要考查导数的运用,涉及划归与转化的数学思想方法.首先令将函数变为两个函数,将题意中的“存在唯一整数,使得在直线的下方”,转化为存在唯一的整数,使得在直线的下方.利用导数可求得函数的极值,由此可求得的取值范围. 5 【答案】C【解析】解:令log2(x2+1)=0,得x=0,令log2(x2+1)=1,得x2+1=2,x=1,令log2(x2+1)=2,得x2+1=4,x=则满足值域为0,1,2的定义域有:0,1, ,0,1, ,0,1, ,0,1, ,0,1,1, ,0,1,1, ,0,1, ,0,1, ,0,1,1, 则满足这样条件的函数的个数为9故选:C【点评】本题考查了对数的运算性质,考查了学生对函数概念的理解,是中档题6 【答案】D【解析】解:若a0b,则,故A错误;若a0b且a,b互为相反数,则|a|=|b|,故B错误;若a0b且a,b互为相反数,则a2b2,故C错误;函数y=x3在R上为增函数,若ab,则a3b3,故D正确;故选:D【点评】本题以命题的真假判断与应用为载体,考查了函数的单调性,难度不大,属于基础题7 【答案】D【解析】解:如图,M=(x,y)|y=2x,N=(x,y)|y=a,若MN=,则a0实数a的取值范围为(,0故选:D【点评】本题考查交集及其运算,考查了数形结合的解题思想方法,是基础题8 【答案】B【解析】试题分析:由于,因为,所以,又,考点:实数的大小比较.9 【答案】D【解析】因为,有可能为负值,所以排除A,C,因为函数为减函数且,所以,排除B,故选D答案:D 10【答案】C【解析】解:命题“若x20,则x0”的逆命题是“若x0,则x20”,是真命题;否命题是“若x20,则x0”,是真命题;逆否命题是“若x0,则x20”,是假命题;综上,以上3个命题中真命题的个数是2故选:C11【答案】C【解析】试题分析:由题意得,根据一次函数的单调性可知,函数在区间上恒正,则,即,解得,故选C.考点:函数的单调性的应用.12【答案】【解析】:依题意,不妨设点M在第一象限,且Mx0,y0,由抛物线定义,|MF|x0,得5x02.x03,则y24,所以M3,2,又点M在双曲线上,241,则a2,a,因此渐近线方程为5x3y0.二、填空题13【答案】 【解析】解:点A(1,1),B(1,2),C(2,1),D(3,4),向量=(1+1,21)=(2,1),=(3+2,4+1)=(5,5);向量在方向上的投影是=14【答案】1,)(9,25 【解析】解:集合,得 (ax5)(x2a)0,当a=0时,显然不成立,当a0时,原不等式可化为,若时,只需满足,解得;若,只需满足,解得9a25,当a0时,不符合条件,综上,故答案为1,)(9,25【点评】本题重点考查分式不等式的解法,不等式的性质及其应用和分类讨论思想的灵活运用,属于中档题15【答案】【解析】考查函数,其余条件均不变,则:当x0时,f(x)=x+2x,单调递增,f(1)=1+210,由零点存在定理,可得f(x)在(1,0)有且只有一个零点;则由题意可得x0时,f(x)=axlnx有且只有一个零点,即有有且只有一个实根。令,当xe时,g(x)0,g(x)递减;当0x0,g(x)递增。即有x=e处取得极大值,也为最大值,且为,如图g(x)的图象,当直线y=a(a0)与g(x)的图象只有一个交点时,则.回归原问题,则原问题中.点睛: (1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f(f(a)的形式时,应从内到外依次求值(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围16【答案】 【解析】【解析】;故17【答案】 【解析】解:tan=,均为锐角,tan()=,解得:tan=1,=故答案为:【点评】本题考查了两角差的正切公式,掌握公式是关键,属于基础题18【答案】1 【解析】解:f(0)=01=1,ff(0)=f(1)=21=1,故答案为:1【点评】本题考查了分段函数的简单应用三、解答题19【答案】 【解析】解:(1)当p=时,B=x|0x,AB=x|2x;(2)当AB=B时,BA;令2p1p+3,解得p4,此时B=,满足题意;当p4时,应满足,解得p不存在;综上,实数p的取值范围p420【答案】 【解析】解:(1)设等差数列an的公差为d,a3=2,S8=22,解得,an的通项公式为an=1+(n1)=(2)bn=,Tn=2+=2=21【答案】(1)参数方程为,;(2).【解析】试题分析:(1)先将曲线的极坐标方程转化为直角坐标系下的方程,可得,利用圆的参数方程写出结果,将直线的参数方程消去参数变为直线的普通方程;(2)利用参数方程写出曲线上任一点坐标,用点到直线的距离公式,将其转化为关于的式子,利用三角函数性质可得距离最值.试题解析:(1)曲线的普通方程为,所以参数方程为,直线的普通方程为.(2)曲线上任意一点到直线的距离为,所以曲线上任意一点到直线的距离的最大值为.考点:1.极坐标方程;2.参数方程.22【答案】【解析】【知识点】三角函数的图像与性质恒等变换综合【试题解析】()因为所以函数的最小正周期为()由(),得因为,所以,所以所以且当时,取到最大值;当时,取到最小值23【答案】 【解析】解:(1)(2)设回归方程为=bx+a则b=5/5=13805550/145552=6.5故回归方程为=6.5x+17.5(3)当x=7时, =6.57+17.5=63,所以当广告费支出7(百万元)时,销售额约为63(百万元)【点评】本题考查线性回归方

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论