


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
点和直线的有关对称问题摘要:对称问题是中学数学的一个重要知识点,也是近几年高考中的热点,主要有点、直线、曲线关于点和直线对称两种。中点坐标公式或两条直线垂直的条件是解决对称问题的重要工具。解析几何中的中心对称和轴对称问题最终都可以归结为关于点的对称问题加以解决。 关键词:点;直线;中心对称;轴对称 对称思想是近几年高考中的热点,它主要分为中心对称和轴对称两种,解对称问题要把握对称的实质,掌握其解题方法,提高解题的准确性和解题的速度,它主要有以下几种情况: (一)中心对称 点关于点对称 直线关于点对称 例1:求直线 x+y-2=0 关于点P(a,b)对称的直线方程. 分析一:在已知直线上z任取两点A、B,再分别求出A、B关于P点的对称点A、B,然后由两点式可得所求直线方程. 解:在直线x+y-2=0上取两点A(0,2)、B(1,1),则它们关于P(a,b)对称的点分别为 A(2a,2b-2)、B(2a-1,2b-1),由两点式得所求直线为: 分析二:中心对称的两条直线是互相平行的,并且这两条直线与对称中心的距离相等. 解:设所求直线方程为x+y+=0,则 点评:方法三为相关点法,是求曲线方程的一种常用方法,可进一步推广:曲线C:f(x,y)=0关于点P(a,b)对称的曲线C的方程为f(2a-x,2b-y)=0.特别的, 曲线f(x,y)=0关于原点对称的曲线方程为: f(-x,-y)=0. (二)轴对称 点关于直线对称 例2:M(-1,3)关于直线:x+y-1=0的对称点M的坐标. 解二:过点M(-1,3)与直线l 垂直的直线的斜率k=1,则直线方程为x-y+4=0. 设M关于直线l 的对称点为M,则E为线段MM的中点,由中点坐标公式知:M的坐标为(-2,2) 解三:设M(a,b), 线段MM的垂直平分线上的任意一点为A(x,y). MA=MA , (x+1)2+(y-3)2=(x-a)2+(y-b)2 这就是已知直线 l的方程 故点M的坐标为(-2,2) 直线关于直线对称 例3:求直线a:2x+y-4=0关于直线l :3x+4y-1=0对称的直线b的方程. 求直线 l1:2x-y+3=0关于直线l :2x-y+4=0对称的直线l2 的方程. 分析:由平面几何知识知,若a、b关于直线 l对称,则应具有以下性质:当a、b相交时,则对称轴是a、b交角的平分线(且通过交点); 当a、b平行时,则a、b与对称轴的距离相等. 若点A在直线a上,则点A关于直线 l的对称点B一定在直线b上,并且ABl ;AB的中点在l 上. 解一:由 2x+y-4=03x+4y-1=0得a与l的交点为(,) 则E(3,-2)一定在b上,设b的斜率为k,于是 (三)特殊的对称关系 点(a,b)关于x轴的对称点为(a,-b); 点(a,b)关于y轴的对称点为(-a,b);点(a,b)关于原点的对称点为(-a,-b);点(a,b)关于直线y=x的对称点为(b,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025企业合同授权委托书范本
- 2024年1月幼儿园校车防疫物资随车配备责任合同书
- 2025年运载火箭承力壳段项目建议书
- 2024年11月冻土区碎石路基主动冷却技术配套条款
- 班级活动的总结与反思计划
- 2025年增韧剂项目发展计划
- 2025年运载火箭控制系统仿真实时处理系统合作协议书
- 社区影响力项目的实施计划
- 2024年4月份深空探测设备共有权解除法律条款
- 如何进行财务知识的分享与传递计划
- 汽车修理业务受理程序、服务承诺、用户抱怨制度
- 小学三年级毛笔书法教案含三维目标
- 土木工程毕业论文7篇
- 代加工洗煤合同模板
- 2022年湖北武汉中考满分作文《护他人尊严燃生命之光》
- 三方代付工程款协议书范本2024年
- 有限空间作业气体检测记录表
- 幼升小必练20以内加减法练习试题打印版
- 2024年四川省成都市“蓉漂”人才荟武候区招聘23人历年(高频重点提升专题训练)共500题附带答案详解
- 农村生活污水治理提升工程-初步设计说明
- 财政投资评审咨询服务预算和结算评审项目投标方案(技术标)
评论
0/150
提交评论