已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
题组层级快练(五十)1若直线ab,且直线a平面,则直线b与平面的位置关系是()AbBbCb或b Db与相交或b或b答案D解析b与相交或b或b都可以2(2015广东,文)若直线l1和l2是异面直线,l1在平面内,l2在平面内,l是平面与平面的交线,则下列命题正确的是()Al与l1,l2都不相交Bl与l1,l2都相交Cl至多与l1,l2中的一条相交Dl至少与l1,l2中的一条相交答案D解析可用反证法假设l与l1,l2都不相交,因为l与l1都在平面内,于是ll1,同理ll2,于是l1l2,与已知矛盾,故l至少与l1,l2中的一条相交3若P是两条异面直线l,m外的任意一点,则()A过点P有且仅有一条直线与l,m都平行B过点P有且仅有一条直线与l,m都垂直C过点P有且仅有一条直线与l,m都相交D过点P有且仅有一条直线与l,m都异面答案B解析对于选项A,若过点P有直线n与l,m都平行,则lm,这与l,m异面矛盾;对于选项B,过点P与l,m都垂直的直线,即过P且与l,m的公垂线段平行的那一条直线;对于选项C,过点P与l,m都相交的直线有一条或零条;对于选项D,过点P与l,m都异面的直线可能有无数条4如图所示,ABCDA1B1C1D1是长方体,O是B1D1的中点,直线A1C交平面AB1D1于点M,则下列结论正确是()AA,M,O三点共线 BA,M,O,A1不共面CA,M,C,O不共面 DB,B1,O,M共面答案A解析连接A1C1,AC,则A1C1AC,A1,C1,A,C四点共面,A1C平面ACC1A1,MA1C,M平面ACC1A1,又M平面AB1D1,M在平面ACC1A1与平面AB1D1的交线上,同理O在平面ACC1A1与平面AB1D1的交线上A,M,O三点共线5下列各图是正方体和正四面体,P,Q,R,S分别是所在棱的中点,这四个点不共面的图形是()答案D解析在A中易证PSQR,P,Q,R,S四点共面在C中易证PQSR,P,Q,R,S四点共面在D中,QR平面ABC,PS面ABC P且PQR,直线PS与QR为异面直线P,Q,R,S四点不共面在B中P,Q,R,S四点共面,证明如下:取BC中点N,可证PS,NR交于直线B1C1上一点,P,N,R,S四点共面,设为.可证PSQN,P,Q,N,S四点共面,设为.,都经过P,N,S三点,与重合,P,Q,R,S四点共面6(2019江西景德镇模拟)将图中的等腰直角三角形ABC沿斜边BC上的中线折起得到空间四面体ABCD(如图),则在空间四面体ABCD中,AD与BC的位置关系是()A相交且垂直 B相交但不垂直C异面且垂直 D异面但不垂直答案C解析在题图中,ADBC,故在题图中,ADBD,ADDC,又因为BDDCD,所以AD平面BCD,又BC平面BCD,D不在BC上,所以ADBC,且AD与BC异面,故选C.7空间不共面的四点到某平面的距离相等,则这样的平面的个数为()A1 B4C7 D8答案C解析当空间四点不共面时,则四点构成一个三棱锥,如图当平面一侧有一点,另一侧有三点时,令截面与四个面之一平行时,满足条件的平面有4个;当平面一侧有两点,另一侧有两点时,满足条件的平面有3个,所以满足条件的平面共有7个8(2019湖北孝感八校联考)已知平面及直线a,b,则下列说法正确的是()A若直线a,b与平面所成角都是30,则这两条直线平行B若直线a,b与平面所成角都是30,则这两条直线不可能垂直C若直线a,b平行,则这两条直线中至少有一条与平面平行D若直线a,b垂直,则这两条直线与平面不可能都垂直答案D解析对于A,若直线a,b与平面所成角都是30,则这两条直线平行、相交或异面,故A错误;对于B,若直线a,b与平面所成角都是30,则这两条直线可能垂直,如图,直角三角形ACB的直角顶点C在平面内,边AC,BC可以与平面都成30角,故B错误;C显然错误;对于D,假设直线a,b与平面都垂直,则直线a,b平行,与已知矛盾,则假设不成立,故D正确故选D.9(2019广东茂名联考)一正方体的平面展开图如图所示,在这个正方体中,有下列四个命题:AFGC;BD与GC成异面直线且夹角为60;BDMN;BG与平面ABCD所成的角为45.其中正确的个数是()A1 B2C3 D4答案B解析将平面展开图还原成正方体(如图所示)对于,由图形知AF与GC异面垂直,故正确;对于,BD与GC显然成异面直线如图,连接EB,ED,则BMGC,所以MBD即为异面直线BD与GC所成的角(或其补角)在等边BDM中,MBD60,所以异面直线BD与GC所成的角为60,故正确;对于,BD与MN为异面垂直,故错误;对于,由题意得,GD平面ABCD,所以GBD是BG与平面ABCD所成的角但在RtBDG中,GBD不等于45,故错误综上可得正确10(2019内蒙古包头模拟)如图,在正方体ABCDA1B1C1D1中,点P在线段AD1上运动,则异面直线CP与BA1所成的角的取值范围是()A(0,) B(0,C0, D(0,答案D解析当P与D1重合,CPBA1,所成角为0;当P与A点重合,CAA1C1,连BC1,A1BC1为正三角形,所成角为60,又由于异面直线所成角为(0,90,所以选D.11如图所示,M是正方体ABCDA1B1C1D1的棱DD1的中点,给出下列四个命题:过M点有且只有一条直线与直线AB,B1C1都相交;过M点有且只有一条直线与直线AB,B1C1都垂直;过M点有且只有一个平面与直线AB,B1C1都相交;过M点有且只有一个平面与直线AB,B1C1都平行其中真命题是()A BC D答案C解析 将过点M的平面CDD1C1绕直线DD1旋转任意不等于(kZ)的角度,所得的平面与直线AB,B1C1都相交,故错误,排除A,B,D,选C.12(2019江西高安段考)已知直四棱柱ABCDA1B1C1D1的底面是边长为1的正方形,AA1,则异面直线A1B1与BD1所成角的大小为_答案60解析A1B1AB,ABD1为异面直线A1B1与BD1所成的角,连接AD1,则在RtABD1中,AB1,易得AD1,tanABD1,ABD160.13(2019江西莲塘一中、临川二中联考)如图,正方体ABCDA1B1C1D1的棱长为1,P为BC的中点,Q为线段CC1上的动点,过点A,P,Q的平面截正方体所得的截面为S,当CQ1时,S的面积为_答案解析当CQ1时,Q与C1重合如图,取A1D1,AD的中点分别为F,G.连接AF,AP,PC1,C1F,PG,D1G,AC1,PF.F为A1D1的中点,P为BC的中点,G为AD的中点,AFFC1APPC1,PG綊CD,AF綊D1G.由题意易知CD綊C1D1,PG綊C1D1,四边形C1D1GP为平行四边形,PC1綊D1G,PC1綊AF,A,P,C1,F四点共面,四边形APC1F为菱形AC1,PF,过点A,P,Q的平面截正方体所得的截面S为菱形APC1F,其面积为AC1PF.14有下列四个命题:若ABC在平面外,它的三条边所在的直线分别交平面于P,Q,R,则P,Q,R三点共线;若三条直线a,b,c互相平行且分别交直线l于A,B,C三点,则这四条直线共面;空间中不共面的五个点一定能确定10个平面;若a不平行于平面,且a,则内的所有直线与a异面其中正确命题的序号是_答案解析在中,因为P,Q,R三点既在平面ABC上,又在平面上,所以这三点必在平面ABC与平面的交线上,即P,Q,R三点共线,所以正确在中,因为ab,所以a与b确定一个平面,而l上有A,B两点在该平面上,所以l,即a,b,l三线共面于;同理a,c,l三线也共面,不妨设为,而,有两条公共的直线a,l,所以与重合,即这些直线共面,所以正确在中,不妨设其中有四点共面,则它们最多只能确定7个平面,所以错在中,由题设知,a与相交,设aP,如图,在内过点P的直线l与a共面,所以错15.如图所示,平面ABEF平面ABCD,四边形ABEF与ABCD都是直角梯形,BADFAB90,BCAD且BCAD,BEAF且BEAF,G,H分别为FA,FD的中点(1)证明:四边形BCHG是平行四边形;(2)C
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- Schaftoside-Standard-生命科学试剂-MCE
- 2024年电池组配件项目规划申请报告
- 2024年柔性自动化装备项目规划申请报告
- 2023年鸡西密山市事业单位招聘工作人员笔试真题
- 2024年碳化硅陶瓷纤维项目申请报告
- 2023年北京市石景山区教育委员会教育系统教育人才库教师招聘考试真题
- 2024年多功能轻质复合板项目申请报告范文
- 2024年微信生态项目规划申请报告
- 病毒与生命研究报告
- 2024年无机非金属材料项目规划申请报告
- 大学生职业生涯规划测绘地理信息技术专业
- 小学新教材解读培训
- MOOC 全球化与中国文化-西南交通大学 中国大学慕课答案
- 摊位布局规划方案
- 数据编码第二课时课件高中信息技术教科版必修1
- 注塑工艺损耗率
- 钢结构漏雨维修方案
- 小学三年级一位数乘两位数的乘法练习题(500道)
- (含附件)ktv承包协议书模板-2024
- (高清版)DZT 0289-2015 区域生态地球化学评价规范
- 2024年强基计划解读 课件-2024届高三下学期主题班会
评论
0/150
提交评论