




已阅读5页,还剩52页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1,Finite Element Method,MODELLING TECHNIQUES,CHAPTER 8:,2,CONTENTS,INTRODUCTION CPU TIME ESTIMATION GEOMETRY MODELLING MESHING Mesh density Element distortion MESH COMPATIBILITY Different order of elements Straddling elements,CONTENTS,USE OF SYMMETRY Mirror symmetry Axial symmetry Cyclic symmetry Repetitive symmetry MODELLING OF OFFSETS Creation of MPC equations for offsets MODELLING OF SUPPORTS MODELLING OF JOINTS,4,CONTENTS,OTHER APPLICATIONS OF MPC EQUATIONS Modelling of symmetric boundary conditions Enforcement of mesh compatibility Modelling of constraints by rigid body attachment IMPLEMENTATION OF MPC EQUATIONS Lagrange multiplier method Penalty method,5,INTRODUCTION,Ensure reliability and accuracy of results. Improve efficiency and accuracy.,6,INTRODUCTION,Considerations: Computational and man power resource that limit the scale of the FEM model. Requirement on results that defines the purpose and hence the methods of the analysis. Mechanical characteristics of the geometry of the problem domain that determine the types of elements to use. Boundary conditions Loading and initial conditions,7,CPU TIME ESTIMATION,( ranges from 2 3),Bandwidth, b, affects ,- minimize bandwidth,Aim:,To create a FEM model with minimum DOFs by using elements of as low dimension as possible, and To use as coarse a mesh as possible, and use fine meshes only for important areas.,8,GEOMETRY MODELLING,Reduction of complex geometry to a manageable one. 3D? 2D? 1D? Combination?,(Using 2D or 1D makes meshing much easier),9,GEOMETRY MODELLING,Detailed modelling of areas where critical results are expected. Use of CAD software to aid modelling. Can be imported to FE software for meshing.,10,MESHING,To minimize the number of DOFs, have fine mesh at important areas.,In FE packages, mesh density can be controlled by mesh seeds.,Mesh density,(Image courtesy of Institute of High Performance Computing and Sunstar Logistics(s) Pte Ltd (s),11,Element distortion,Use of distorted elements in irregular and complex geometry is common but there are some limits to the distortion. The distortions are measured against the basic shape of the element Square Quadrilateral elements Isosceles triangle Triangle elements Cube Hexahedron elements Isosceles tetrahedron Tetrahedron elements,12,Element distortion,Aspect ratio distortion,Rule of thumb:,13,Element distortion,Angular distortion,14,Element distortion,Curvature distortion,15,Element distortion,Volumetric distortion,Area outside distorted element maps into an internal area negative volume integration,16,Element distortion,Volumetric distortion (Contd),17,Element distortion,Mid-node position distortion,Shifting of nodes beyond limits can result in singular stress field (see crack tip elements),18,MESH COMPATIBILITY,Requirement of Hamiltons principle admissible displacement The displacement field is continuous along all the edges between elements,19,Different order of elements,Crack like behaviour incorrect results,20,Different order of elements,Solution: Use same type of elements throughout Use transition elements Use MPC equations,21,Straddling elements,Avoid straddling of elements in mesh,22,USE OF SYMMETRY,Different types of symmetry:,Mirror symmetry,Axial symmetry,Cyclic symmetry,Repetitive symmetry,Use of symmetry reduces number of DOFs and hence computational time. Also reduces numerical error.,23,Mirror symmetry,Symmetry about a particular plane,24,Mirror symmetry,Consider a 2D symmetric solid:,u1x = 0,u2x = 0,u3x = 0,Single point constraints (SPC),25,Mirror symmetry,Deflection = Free Rotation = 0,Symmetric loading,26,Mirror symmetry,Anti-symmetric loading,Deflection = 0 Rotation = Free,27,Mirror symmetry,Symmetric No translational displacement normal to symmetry plane No rotational components w.r.t. axis parallel to symmetry plane,28,Mirror symmetry,Anti-symmetric No translational displacement parallel to symmetry plane No rotational components w.r.t. axis normal to symmetry plane,29,Mirror symmetry,Any load can be decomposed to a symmetric and an anti-symmetric load,30,Mirror symmetry,31,Mirror symmetry,32,Mirror symmetry,Dynamic problems (E.g. 2 half models to get full set of eigen modes in eigenvalue analysis),33,Axial symmetry,Use of 1D or 2D axisymmetric elements Formulation similar to 1D and 2D elements except the use of polar coordinates,Cylindrical shell using 1D axisymmetric elements,3D structure using 2D axisymmetric elements,34,Cyclic symmetry,uAn = uBn,uAt = uBt,Multipoint constraints (MPC),35,Repetitive symmetry,uAx = uBx,36,MODELLING OF OFFSETS, offset can be safely ignored, offset need to be modelled, ordinary beam, plate, and shell elements should not be used. Use 2-D or 3-D solid elements.,Guidelines:,37,MODELLING OF OFFSETS,Three methods: Very stiff element Rigid element MPC equations,38,Creation of MPC equations for offsets,Eliminate q1, q2, q3,39,Creation of MPC equations for offsets,40,Creation of MPC equations for offfsets,d6 = d1 + d5 or d1 + d5 - d6 = 0 d7 = d2 - d4 or d2 - d4 - d7 = 0 d8 = d3 or d3 - d8 = 0 d9 = d5 or d5 - d9 = 0,41,MODELLING OF SUPPORTS,42,MODELLING OF SUPPORTS,(Prop support of beam),43,MODELLING OF JOINTS,Perfect connection ensured here,44,MODELLING OF JOINTS,Mismatch between DOFs of beams and 2D solid beam is free to rotate (rotation not transmitted to 2D solid),Perfect connection by artificially extending beam into 2D solid (Additional mass),45,MODELLING OF JOINTS,Using MPC equations,46,MODELLING OF JOINTS,Similar for plate connected to 3D solid,47,OTHER APPLICATIONS OF MPC EQUATIONS,Modelling of symmetric boundary conditions,dn = 0,ui cos + vi sin=0 or ui+vi tan =0 for i=1, 2, 3,48,Enforcement of mesh compatibility,dx = 0.5(1-) d1 + 0.5(1+) d3,dy = 0.5(1-) d4 + 0.5(1+) d6,Substitute value of at node 3,0.5 d1 - d2 + 0.5 d3 =0,0.5 d4 - d5 + 0.5 d6 =0,Use lower order shape function to interpolate,49,Enforcement of mesh compatibility,Use shape function of longer element to interpolate,dx = -0.5 (1-) d1 + (1+)(1-) d3 + 0.5 (1+) d5,Substituting the values of for the two additional nodes,d2 = 0.251.5 d1 + 1.50.5 d3 - 0.250.5 d5,d4 = -0.250.5 d1 + 0.51.5 d3 + 0.251.5 d5,50,Enforcement of mesh compatibility,In x direction,0.375 d1 - d2 + 0.75 d3 - 0.125 d5 = 0,-0.125 d1 + 0.75 d3 - d4 + 0.375 d5 = 0,In y direction,0.375 d6- d7+0.75 d8- 0.125 d10 = 0,-0.125 d6+0.75 d8 - d9 + 0.375 d10 = 0,51,Modelling of constraints by rigid body attachment,d1 = q1 d2 = q1+q2 l1 d3=q1+q2 l2 d4=q1+q2 l3,(l2 /l1-1) d1 - ( l2 /l1) d2 + d3 = 0 (l3 /l1-1) d1 - ( l3 /l1) d2 + d4 = 0,Eliminate q1 and q2,(DOF in x direction not considered),52,IMPLEMENTATION OF MPC EQUATIONS,(Matrix form of MPC equations),(Global system equation),Constant matrices,53,Lagrange multiplier method,(Lagrange multipliers),Multiplied to MPC equations,Added to functional,The stationary condition requires the derivatives of p with respect to the Di and i to vanish.,Matrix equation is solved,54,Lagrange multiplier method,Constraint equations are satisfied exactly Total number of
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年教育行业人才流失原因与吸引机制创新路径研究报告
- 2025年植物基因编辑技术在转基因植物抗病虫害育种中的应用成果鉴定报告
- 自卸吊车买卖合同协议书
- 泵车转卖合同协议书范本
- 防尘布工地销售合同范本
- 理疗店合伙协议合同范本
- 物业小区的广告合同协议
- 法院婚内财产协议书模板
- 竹制半成品采购合同范本
- 罗非鱼鱼苗订购合同范本
- 2025年施工员-土建方向-岗位技能(施工员)考试题库
- 河南省安阳市林州市2024-2025学年八年级下学期期末历史试卷 (含答案)
- 胸痛单元建设课件介绍
- 超市消防安全管理制度制度
- 酒店服务流程与空间布局优化
- DB11∕T 2380-2024 城市轨道交通工程盖挖法施工技术规程
- (2025)医疗护理员理论考试试题含答案
- 2025年贵州省中考英语真题含答案
- 2025年广西中考语文试题卷(含答案)
- 建设工程法律培训
- 2024广西专业技术人员继续教育公需科目参考答案(97分)
评论
0/150
提交评论