Asummaryofthermodynamicprocesses:热力学过程的总结.doc_第1页
Asummaryofthermodynamicprocesses:热力学过程的总结.doc_第2页
Asummaryofthermodynamicprocesses:热力学过程的总结.doc_第3页
Asummaryofthermodynamicprocesses:热力学过程的总结.doc_第4页
Asummaryofthermodynamicprocesses:热力学过程的总结.doc_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Thermodynamic ProcessesCalorimetryChange of phase?Type of heatEquationTemperatureCalculationChange?Nospecific heatdQ = mCdT 1YesYeslatent heatdQ = mL No1 Caution! Be careful of molar versus mass based specific heat constants.Ideal Gas LawPV = nRT,P = pressure in Pascals (N/m2)V = volume in m3n = number of moles (dimensionless)R = gas constantT = temperature in Kelvin (not Celsius!)Other Key EquationsdU = dQ dW(first law of thermodynamics)dQ = nCVDT(ideal gas, specific heat at constant volume)dQ = nCPDT(ideal gas, specific heat at constant pressure)dU = nCVDT(ideal gas, derivation attached)CP CV = R(statistical mechanics)Internal Energy of an Ideal GasThe internal energy depends only on the endpoints. Pick a constant volume and constant pressure line segments to connect the endpoints. Using the first law:DU = nCV(T T0) + nCP(Tf T) 0 Pf(Vf-V0) = nCV(Tf T0), sincePfV0 = nRTLaws of Thermodynamics for Ideal Gasesprocessmeaningwork (DW)heat (DQ)entropy (DS)isobaricconstant pressureP0(VF V0)nCP(TF T0)nCP ln(TF/T0)isochoricconstant volume0nCV(TF T0)nCV ln(TF/T0)isothermalconstant temperature(nRT0)ln(VF/V0)1(nR)ln(VF/V0)adiabatic 2no heat exchange(PFVF- P0V0) /(1 - g) 0031From the first law of thermodynamics, dU = dQ dW; dU=0 for an isothermal process, so dQ = dW, or DQ = DW2From the first law of thermodynamics, dU = dQ dW; dQ=0 for an adiabatic process, so dU = -dW =nCVdT = -PdV;from the ideal gas law, dT = d(PV/nR), son(CV/nR) d(PV) = -PdVn(CV/nR) PdV + VdP = -PdV,VdP = -PdV 1 + (CV/R) / (CV/R);since R = CP - CV, g CP / CVVdP = -gPdV , orP/P0 = (V/V0)-g,orPVg = P0V0g.3dW = PdV, so DW = (P0V0g) V-gdV = (P0V0g) V1-g/(1 - g), V V0,VFDW = (P0V0g) V1-g/(1 - g) = (PFVF- P0V0) /(1 - g)Examples follow(1) a simple example(2) Carnot cycle(3) Otto cycle(4) Diesel cycle(5) Stirling cycleExample 1: A Simple ExamplePV4P0P03V0V01243Heat calculations:Work calculations:DQ12 = 8(CP/R)P0V0DW12 = 8P0V0DQ23 = -9(CV/R)P0V0DW23 = DW41 = 0DQ34 = -2(CP/R)P0V0DW34 = -2P0V0DQ41 = 3(CV/R)P0V0Entropy calculations:Sums:DS12 = nCPln(3)DQ = DW = 6P0V0DS23 = -nCVln(4)DU = DQ - DW = 0 (expected, closed cycle)DS34 = -nCPln(3)DS = 0 (reversible process)DS41 = nCVln(4)efficiency:QH = DQ12 + DQ41 = (8CP + 3CV)P0V0/R(sum of positive heat results)QC = |DQ23 + DQ34| = (2CP + 9CV)P0V0/R(sum of negative heat results)e = 1 - (2CP + 9CV)/ (8CP + 3CV) = 1 - (2g + 9)/ (8g + 3);for a monatomic gas, g = 5/3 and e = 0.24Carnot efficiency:TC = T4 = P0V0/(nR)TH = T2 = 12P0V0/(nR)e = 1 - TC/TH = 0.92 (notice that the actual efficiency is much lower)Example 2: Carnot CycleSTATETaTHbTHcTCdTC_STEPTYPEDQDWDUDSa-bisothermalnRTHln(Vb/Va)DQ0nRln(Vb/Va)b-cadiabatic0DUnCV(TC - TH)0c-disothermalnRTCln(Vd/Vc) DQ0nRln(Vd/Vc)d-aadiabatic0DUnCV (TH - TC)0_efficiency:DQab = nRTHln(Vb/Va) 0DQcd = -nRTCln(Vd/Vc) Vb/Va = Vc/Vd = |QC| / | QH | = (TC/TH)TdVdg-1 = TaVag-1|e = 1 - (TC/TH)entropy:DS = 0, see efficiency calculation. Reversible process.Example 3: Otto CycleSTATEPVTaPaVa = rVbTabPb = Pa rgVbTb = Ta rg-1cPc = Pb(Tc/Tb)VbTc = Td rg-1dPd = Pc(1/r)gVa = rVbTd_STEPTYPEDQDWDUDSa-badiabatic0nCV(Tb Ta)-DW0b-cisochoricnCV(Tc Tb)0DQnCVln(Tc/Tb)c-dadiabatic0nCV(Td Tc)-DW0d-aisochoric nCV(Ta Td)0DQnCVln(Ta/Td)_efficiency:DQbc = nCV(Tc Tb) 0DQcd = nCV(Ta Td) Tb Ta (since PcPb);Td/Ta = Tc/Tb 1 = Td Ta;so that Tc = TH and Ta = TCOLD; using these temperatures, the Carnot efficiency is e = 1 (1/ rg-1)( Ta/Td) Otto efficiencyentropy:DS = nCVln(Tc/Tb) + nCVln(Ta/Td) = nCVln(Tc/Tb)(Ta/Td)= nCVln(Td/Ta)(Ta/Td)= nCVln (1) = 0DS = 0. Reversible process.Example 4: Diesel CycleSTATEPVTaPaVa = rVbTabPb = Pa rgVbTb = Ta rg-1cPbVc= rcVbTc = (Vc/Vb)Tb = (Vc/Vb)Ta rg-1dPd = Pa (Vc/Vb)gVa = rVbTd = (Vc/Vb)g (1/r)g-1Tb = (Vc/Vb)g Ta_STEPTYPEDQDWDUDSa-badiabatic0nCV(Tb Ta)-DW0b-cisobaricnCP(Tc Tb)0DQnCPln(Tc/Tb) c-dadiabatic0nCV(Td Tc)-DW0d-aisochoric nCV(Ta Td)0DQnCVln(Ta/Td)_efficiency:DQbc = nCP(Tc Tb) 0DQcd = nCV(Ta Td) 1 2/ (5 r2/3) for monatomicNOTE: for rc 1, e - 1 (1/ g)(rc/r) g-1 = 1 3(r/rc)-2/3 for monatomicentropy:DS = nCPln(Tc/Tb) + nCVln(Ta/Td)= nCV gln(Tc/Tb) + ln(Ta/Td)= nCV ln(Tc/Tb)g(Ta/Td)= nCV ln(Vc/Vb)g (Vb/Vc)g= nCV ln(1) = 0DS = 0. Reversible process.Example 5: Stirling CycleSTATEPVTaPaVa = rVbTCbPbVbTCcPcVbTHdPdVa = rVbTH_STEPTYPEDQDWDUDSa-bisothermalDW-nRTC ln(r)0nRln(Vb/Va)b-cisochoricnCV(TH TC)0DQnCVln(Tc/Tb) c-disothermalDWnRTH ln(r)0nRln(Vd/Vc)d-aisochoric -nCV(TH TC)0DQnCVln(Ta/Td)_efficiency:DQcd = nRTH ln(r) + nCV(TH TC) 0DQab = -nRTC ln(r) - nCV(TH TC) 0 |QC| / | QH | = TH ln(r) + (CV/R)(TH TC) / TC ln(r) + (CV/R)(TH TC)= TH (ln(r) + CV/R) (CV/R)TC) / TC (ln(r) - CV/R) + (CV/R)THe = 1 -

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论