全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题检测(十四)直线与圆一、选择题1(2016福建厦门联考)“C5”是“点(2,1)到直线3x4yC0的距离为3”的()A充要条件B充分不必要条件C必要不充分条件D既不充分也不必要条件2(2016全国甲卷)圆x2y22x8y130的圆心到直线axy10的距离为1,则a()A BC. D23(2016山西运城二模)已知圆(x2)2(y1)216的一条直径通过直线x2y30被圆所截弦的中点,则该直径所在的直线方程为()A3xy50 Bx2y0Cx2y40 D2xy304圆心在曲线y(x0)上,与直线2xy10相切,且面积最小的圆的方程为()A(x2)2(y1)225B(x2)2(y1)25C(x1)2(y2)225D(x1)2(y2)255(2016福州模拟)已知圆O:x2y24上到直线l:xya的距离等于1的点至少有2个,则a的取值范围为()A(3,3)B(,3)(3,)C(2,2)D3,3 6(2016河北五校联考)已知点P的坐标(x,y)满足过点P的直线l与圆C:x2y214相交于A,B两点,则|AB|的最小值是()A2 B4 C. D2二、填空题7(2016山西五校联考)过原点且与直线xy10平行的直线l被圆x2(y)27所截得的弦长为_8已知f(x)x3ax2b,如果f(x)的图象在切点P(1,2) 处的切线与圆(x2)2(y4)25相切,那么3a2b_9(2016河南焦作一模)著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事休”事实上,有很多代数问题可以转化为几何问题加以解决,如:可以转化为平面上点M(x,y)与点N(a,b)的距离结合上述观点,可得f(x)的最小值为_三、解答题10(2015全国卷)已知过点A(0,1)且斜率为k的直线l与圆C:(x2)2(y3)21交于M,N两点(1)求k的取值范围;(2)若12,其中O为坐标原点,求|MN|.11已知点P(2,2),圆C:x2y28y0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点(1)求M的轨迹方程;(2)当|OP|OM|时,求l的方程及POM的面积12(2016湖南东部六校联考)已知直线l:4x3y100,半径为2的圆C与l相切,圆心C在x轴上且在直线l的右上方(1)求圆C的方程;(2)过点M(1,0)的直线与圆C交于A,B两点(A在x轴上方),问在x轴正半轴上是否存在定点N,使得x轴平分ANB?若存在,请求出点N的坐标;若不存在,请说明理由一、选择题1解析:选B点(2,1)到直线3x4yC0的距离为3等价于3,解得C5或C25,所以“C5”是“点(2,1)到直线3x4yC0的距离为3”的充分不必要条件,故选B.2解析:选A因为圆x2y22x8y130的圆心坐标为(1,4),所以圆心到直线axy10的距离d1,解得a.3解析:选D直线x2y30的斜率为,已知圆的圆心坐标为(2,1),该直径所在直线的斜率为2,所以该直径所在的直线方程为y12(x2),即2xy30,故选D.4解析:选D设圆心坐标为C(a0),则半径r,当且仅当2a,即a1时取等号所以当a1时圆的半径最小,此时r,C(1,2),所以面积最小的圆的方程为(x1)2(y2)25.5解析:选A由圆的方程可知圆心为O(0,0),半径为2,因为圆上的点到直线l的距离等于1的点至少有2个,所以圆心到直线l的距离d213,即d3,解得a(3,3),故选A.6解析:选B根据约束条件画出可行域,如图中阴影部分所示,设点P到圆心的距离为d,则求最短弦长,等价于求到圆心的距离最大的点,即为图中的P点,其坐标为(1,3),则d,此时|AB|min24,故选B.二、填空题7解析:由题意可得l的方程为xy0,圆心(0,)到l的距离为d1,所求弦长222.答案:28解析:由题意得f(1)2a2b3,又f(x)3x2a,f(x)的图象在点P(1,2)处的切线方程为y2(3a)(x1),即(3a)xya50,a,b,3a2b7.答案:79解析: f(x),f(x)的几何意义为点M(x,0)到两定点A(2,4)与B(1,3)的距离之和,设点A(2,4)关于x轴的对称点为A,则A为(2,4)要求f(x)的最小值,可转化为|MA|MB|的最小值,利用对称思想可知|MA|MB|AB|5,即f(x)的最小值为5.答案:5三、解答题10解:(1)由题设可知直线l的方程为ykx1.因为直线l与圆C交于两点,所以1,解得k.所以k的取值范围为.(2)设M(x1,y1),N(x2,y2)将ykx1代入方程(x2)2(y3)21,整理得(1k2)x24(1k)x70.所以x1x2,x1x2.x1x2y1y2(1k2)x1x2k(x1x2)18.由题设可得812,解得k1,所以直线l的方程为yx1.故圆心C在直线l上,所以|MN|2.11解:(1)圆C的方程可化为x2(y4)216,所以圆心为C(0,4),半径为4.设M(x,y),则(x,y4),(2x,2y)由题设知0,故x(2x)(y4)(2y)0,即(x1)2(y3)22.由于点P在圆C的内部,所以M的轨迹方程是(x1)2(y3)22.(2)由(1)可知M的轨迹是以点N(1,3)为圆心,为半径的圆由于|OP|OM|,故O在线段PM的垂直平分线上,又P在圆N上,从而ONPM.因为ON的斜率为3,所以l的斜率为,故l的方程为yx.又|OM|OP|2,O到l的距离d为,所以|PM|2,所以POM的面积为SPOM|PM|d.12解:(1)设圆心C(a,0),则2a0或a5(舍)所以圆C:x2y24.(2)当直线ABx轴时,x轴平分ANB.当直线AB的斜率存在时,设直线AB的方程为yk(x1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《船用格栅》规范
- 第五单元 分数四则混合运算(单元测试)(含答案)-2024-2025学年六年级上册数学苏教版
- 2024-2025学年七年级上学期期中测试卷
- 油气设备专用件相关项目投资计划书
- 高导热石墨散热材料行业相关投资计划提议范本
- 石油钻探、开采专用设备相关项目投资计划书范本
- 销售公司运营管理述职报告
- 儿童健康饮食课件
- 遗传病和免疫
- 关于幼儿用电安全
- xx学校未成年人性教育工作方案
- 广开(含解析)《形式与政策》你所从事的行业和工作《决定》中提出怎样的改革举措
- 什么是美术作品 课件-2024-2025学年高中美术湘美版(2019)美术鉴赏
- 2024-2030年组氨酸行业市场现状供需分析及投资评估规划分析研究报告
- 教育信息化教学资源建设规划
- 职业卫生技术服务机构检测人员考试真题题库
- 上海市交大附中附属嘉定德富中学2024-2025学年九年级上学期期中考数学卷
- 屠宰场食品安全管理制度
- 部编版(2024秋)语文一年级上册 6 .影子课件
- 人工智能智能制造设备维护与管理手册
- 2024秋期国家开放大学专科《刑事诉讼法学》一平台在线形考(形考任务一至五)试题及答案
评论
0/150
提交评论