



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
热点探究训练(一)导数应用中的高考热点问题1已知函数f(x)exex2x.(1)讨论f(x)的单调性;(2)设g(x)f(2x)4bf(x),当x0时,g(x)0,求b的最大值解(1)f(x)exex20,等号仅当x0时成立所以f(x)在(,)单调递增.4分(2)g(x)f(2x)4bf(x)e2xe2x4b(exex)(8b4)x,g(x)2e2xe2x2b(exex)(4b2)2(exex2)(exex2b2).8分当b2时,g(x)0,等号仅当x0时成立,所以g(x)在(,)单调递增而g(0)0,所以对任意x0,g(x)0.12分当b2时,若x满足2exex2b2,即0xln(b1)时,g(x)0.而g(0)0,因此当0xln(b1)时,g(x)0.综上,b的最大值为2.15分2已知函数f(x)ex(x2axa),其中a是常数(1)当a1时,求曲线yf(x)在点(1,f(1)处的切线方程;(2)若存在实数k,使得关于x的方程f(x)k在0,)上有两个不相等的实数根,求k的取值范围解(1)由f(x)ex(x2axa)可得f(x)exx2(a2)x.3分当a1时,f(1)e,f(1)4e.所以曲线yf(x)在点(1,f(1)处的切线方程为:ye4e(x1),即y4ex3e.7分(2)令f(x)exx2(a2)x0,解得x(a2)或x0.9分当(a2)0,即a2时,在区间0,)上,f(x)0,所以f(x)是0,)上的增函数,所以方程f(x)k在0,)上不可能有两个不相等的实数根.11分当(a2)0,即a2时,f(x),f(x)随x的变化情况如下表:x0(0,(a2)(a2)(a2),)f(x)00f(x)a由上表可知函数f(x)在0,)上的最小值为f(a2).因为函数f(x)是(0,(a2)上的减函数,是(a2),)上的增函数,且当xa时,有f(x)ea(a)a,又f(0)a.所以要使方程f(x)k在0,)上有两个不相等的实数根,则k的取值范围是.15分3已知函数f(x)(x2)exa(x1)2.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围. 【导学号:51062092】解(1)f(x)(x1)ex2a(x1)(x1)(ex2a).1分()设a0,则当x(,1)时,f(x)0;当x(1,)时,f(x)0.所以f(x)在(,1)上单调递减,在(1,)上单调递增.3分()设a0,由f(x)0得x1或xln(2a)若a,则f(x)(x1)(exe),所以f(x)在(,)上单调递增若a,则ln(2a)1,故当x(,ln(2a)(1,)时,f(x)0;当x(ln(2a),1)时,f(x)0.所以f(x)在(,ln(2a),(1,)上单调递增,在(ln(2a),1)上单调递减.5分若a,则ln(2a)1,故当x(,1)(ln(2a),)时,f(x)0;当x(1,ln(2a)时,f(x)0.所以f(x)在(,1),(ln(2a),)上单调递增,在(1,ln(2a)上单调递减.7分(2)()设a0,则由(1)知,f(x)在(,1)上单调递减,在(1,)上单调递增又f(1)e,f(2)a,取b满足b0且bln,则f(b)(b2)a(b1)2a0,所以f(x)有两个零点.9分()设a0,则f(x)(x2)ex,所以f(x)只有一个零点()设a0,若a,则由(1)知,f(x)在(1,)上单调递增又当x1时f(x)0,故f(x)不存在两个零点;若a,则由(1)知,f(x)在(1,ln(2a)上单调递减,在(ln(2a),)上单调递增又当x1时,f(x)0,故f(x)不存在两个零点综上,a的取值范围为(0,).15分4(2017绍兴二次质量预测)已知函数f(x).(1)讨论函数yf(x)在x(m,)上的单调性;(2)若m,则当xm,m1时,函数yf(x)的图象是否总在函数g(x)x2x图象上方?请写出判断过程解(1)f(x),2分当x(m,m1)时,f(x)0;当x(m1,)时,f(x)0,所以函数f(x)在(m,m1)上单调递减,在(m1,)上单调递增.6分(2)由(1)知f(x)在(m,m1)上单调递减,所以其最小值为f(m1)em1.8分因为m,g(x)在xm,m1最大值为(m1)2m1.所以下面判断f(m1)与(m1)2m1的大小,即判断ex与(1x)x的大小,其中xm1.令m(x)ex(1x)x,m(x)ex2x1,令h(x)m(x),则h(x)ex2,因为xm1,所以h(x)ex20,m(x)单调递增.12分所以m(1)e30,me40,故存在x0,使得m(x0)ex02x010,所以m(x)在(1,x0)上单调递减,在上单调递增
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 知识产权培训与发展方向的试题及答案
- 设计管理与创新的有效实践试题及答案
- 金融经济师试题及答案
- 计算机多选试题及答案
- 钳工入职考试试题及答案
- 病理学知识在护理中的运用试题及答案
- 灾害救援与护理试题及答案
- 药师职业道德与法律试题及答案
- 警犬基础知识试题及答案
- 解读2024年医学考试的基础知识试题及答案
- 2025年湖南省中考数学模拟试卷(一)(原卷版+解析版)
- 大学生职业规划学习通超星期末考试答案章节答案2024年
- 2024年自考《14269数字影像设计与制作》考试复习题库(含答案)
- 2024年《13464电脑动画》自考复习题库(含答案)
- 初中班会 国家安全青春挺膺 课件
- 《声门下吸引技术》PPT课件
- 幼儿园绘本故事PPT:《小红帽》
- 一年级下册数学6.6两位数减一位数、整十数(不退位减)人教版
- 成都体育学院全日制学术型硕士学位研究生培养方案
- 设计交底记录文稿(示例)
- 方向控制回路A
评论
0/150
提交评论