课件:MATLAB神经网络及其应用.ppt_第1页
课件:MATLAB神经网络及其应用.ppt_第2页
课件:MATLAB神经网络及其应用.ppt_第3页
课件:MATLAB神经网络及其应用.ppt_第4页
课件:MATLAB神经网络及其应用.ppt_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

MATLAB中的神经网络及其应用:以BP为例,主讲:王茂芝 副教授 ,1 一个预测问题,已知:一组标准输入和输出数据(见附件) 求解:预测另外一组输入对应的输出 背景:略,2 BP网络,3 MATLAB中的newff命令,NEWFF Create a feed-forward backpropagation network. Syntax net = newff net = newff(PR,S1 S2.SNl,TF1 TF2.TFNl,BTF,BLF,PF),命令newff中的参数说明,NET = NEWFF creates a new network with a dialog box. NEWFF(PR,S1 S2.SNl,TF1 TF2.TFNl,BTF,BLF,PF) takes, PR - Rx2 matrix of min and max values for R input elements. Si - Size of ith layer, for Nl layers. TFi - Transfer function of ith layer, default = tansig. BTF - Backprop network training function, default = trainlm. BLF - Backprop weight/bias learning function, default = learngdm. PF - Performance function, default = mse. and returns an N layer feed-forward backprop network.,参数说明,The transfer functions TFi can be any differentiable transfer function such as TANSIG, LOGSIG, or PURELIN. The training function BTF can be any of the backprop training functions such as TRAINLM, TRAINBFG, TRAINRP, TRAINGD, etc.,参数说明,*WARNING*: TRAINLM is the default training function because it is very fast, but it requires a lot of memory to run. If you get an “out-of-memory“ error when training try doing one of these: (1) Slow TRAINLM training, but reduce memory requirements, by setting NET.trainParam.mem_reduc to 2 or more. (See HELP TRAINLM.) (2) Use TRAINBFG, which is slower but more memory efficient than TRAINLM. (3) Use TRAINRP which is slower but more memory efficient than TRAINBFG.,参数说明,The learning function BLF can be either of the backpropagation learning functions such as LEARNGD, or LEARNGDM. The performance function can be any of the differentiable performance functions such as MSE or MSEREG.,4 MATLAB中的train命令,TRAIN Train a neural network. Syntax net,tr,Y,E,Pf,Af = train(NET,P,T,Pi,Ai,VV,TV) Description TRAIN trains a network NET according to NET.trainFcn and NET.trainParam.,输入参数说明,TRAIN(NET,P,T,Pi,Ai) takes, NET - Network. P - Network inputs. T - Network targets, default = zeros. Pi - Initial input delay conditions, default = zeros. Ai - Initial layer delay conditions, default = zeros. VV - Structure of validation vectors, default = . TV - Structure of test vectors, default = .,输出参数说明,and returns, NET - New network. TR - Training record (epoch and perf). Y - Network outputs. E - Network errors. Pf - Final input delay conditions. Af - Final layer delay conditions.,说明,Note that T is optional and need only be used for networks that require targets. Pi and Pf are also optional and need only be used for networks that have input or layer delays.,输入参数数据结构说明,The cell array format is easiest to describe. It is most convenient for networks with multiple inputs and outputs, and allows sequences of inputs to be presented: P - NixTS cell array, each element Pi,ts is an RixQ matrix. T - NtxTS cell array, each element Pi,ts is an VixQ matrix. Pi - NixID cell array, each element Pii,k is an RixQ matrix. Ai - NlxLD cell array, each element Aii,k is an SixQ matrix. Y - NOxTS cell array, each element Yi,ts is an UixQ matrix. E - NtxTS cell array, each element Pi,ts is an VixQ matrix. Pf - NixID cell array, each element Pfi,k is an RixQ matrix. Af - NlxLD cell array, each element Afi,k is an SixQ matrix.,输入参数数据结构说明,Where: Ni = net.numInputs Nl = net.numLayers Nt = net.numTargets ID = net.numInputDelays LD = net.numLayerDelays TS = number of time steps Q = batch size Ri = net.inputsi.size Si = net.layersi.size Vi = net.targetsi.size,5 实现,数据处理和准备 把WORD数据转换成TXT文件格式 利用dlmread读取数据 是否进行归一化处理?,生成网络,为调用newff命令做好各种准备 pr矩阵的形成 网络结构确定:网络层数以及每层的神经元个数 每一层的传输函数的确定 注意参数的含义,进行网络训练,为调用train命令进行数据准备 输入样本的确定 标准输出的确定 网络训练参数(次数)的确定 net. trainParam.epochs=100 调用网络训练命令:net=train(net,p,t);,进行输出模拟,调用y=sim(net,p)进行输出模拟 画图进行对比,查看网络参数及权值,net net参数引用和查看,6 预测及分析,sim输出 重新训练并sim输出 画图对比,7 程序实现,clc clear all clear net load data; load data_pre; c1=in(:,1); c2=in(:,2); c3=in(:,3); c4=in(:,4); c5=in(:,5); c6=in(:,6); c7=in(:,7); c8=in(:,8);,c1_max=max(c1); c2_max=max(c2); c3_max=max(c3); c4_max=max(c4); c5_max=max(c5); c6_max=max(c6); c7_max=max(c7); c8_max=max(c8);,续,% c1=c1/c1_max; % c2=c2/c2_max; % c3=c3/c3_max; % c4=c4/c4_max; % c5=c5/c5_max; % c6=c6/c6_max; % c7=c7/c7_max; % c8=c8/c8_max; %,% in(:,1)=c1; % in(:,2)=c2; % in(:,3)=c3; % in(:,4)=c4; % in(:,5)=c5; % in(:,6)=c6; % in(:,7)=c7; % in(:,8)=c8; %,续,% c1_max=max(c1); c1_min=min(c1); % c2_max=max(c2); c2_min=min(c2); % c3_max=max(c3); c3_min=min(c3); % c4_max=max(c4); c4_min=min(c4);,% c5_max=max(c5); c5_min=min(c5); % c6_max=max(c6); c6_min=min(c6); % c7_max=max(c7); c7_min=min(c7); % c8_max=max(c8); c8_min=min(c8);,续,pr=c1_min,c1_max;c2_min,c2_max;c3_min,c3_max;c4_min,c4_max;c5_min,c5_max;c6_min,c6_max;c7_min,c7_max;c8_min,c8_max; p=in; t=out; net=newff(pr,8 11 4,logsig logsig logsig);,net.trainParam.epochs=100; net=train(net,p,t); y=sim(net,p); % plot(t); % figure; % plot(y);,后面内容直接删除就行 资料可以编辑修改使用 资料可以编辑修改使用 资料仅供参考,实际情况实际分析,主要

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论